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SUMMARY

The overall theme of this work is the incorporation of engineering information

into experimental design processes where the objective is to find the optimal operating

condition of a system. In particular, novel methodology is developed for optimizing

experimental systems in a high-cost, low-resource setting where the underlying re-

sponse surface may be highly complex. The first part of this work is concerned with

building an initial experimental design, and the second part provides a new batch

sequential experimental design process. In both parts, advancements in both model

building in the presence of multiple sources of information and designing experiments

are provided. An introduction to this work, as well as problem motivation and ob-

jectives are provided in chapter 1.

In the second chapter, an initial experimental design criteria, applicable to com-

puter and physical experiments, is proposed for optimization problems by combining

multiple, potentially competing, sources of prior information–engineering models, ex-

pert opinion, and data from past experimentation on similar, non-identical systems.

By leveraging prior information, some initial resources are dedicated to solving the

optimization problem, in turn, potentially reducing the total number of resources

needed in follow-up experimentation. New methodology is provided for incorporating

and combining conjectured models and data into both the initial modeling and design

stages. As a result, the design criteria is flexible in how it balances space filling and

objective oriented properties in the presence of conjectured prior information. An ap-

plication to a thin-film growth study is provided in addition to a detailed numerical

study of the design properties.

In the third, and final, chapter, a batch sequential design procedure is proposed for

x



optimizing high-cost, low-resource experiments with complicated response surfaces.

The success in the proposed approach lies in melding a flexible, sequential design

algorithm with a powerful local modeling approach. Batch experiments are designed

sequentially in a manner so that they adapt to balance space-filling properties and

the search for the optimal operating condition. In addition, the experimental design

region adapts by balancing the elimination of poor design regions with the focus on

potential optimal design regions. Local model calibration and averaging techniques

are introduced to easily allow incorporation of statistical models and engineering

knowledge, even if such knowledge pertains to only subregions of the complete design

space. The overall process iterates between adapting designs, adapting models, and

updating engineering knowledge over time. Performance of the process is demon-

strated on a nanowire synthesis system as well as on an optimization test function.

xi



CHAPTER I

INTRODUCTION

Motivated by the emerging field of nanotechnology, the intent of this research is to

provide new advances in experimental design methodology to address the challenges

found in high-cost, low-resource experimental systems with complex response surfaces.

The underlying theme of this work is the incorporation of (potentially competing)

sources of engineering knowledge via a direct interaction with engineers to build

irregular experimental designs. By leveraging this expertise, experimental designs

can be made more efficient and effective, conceivably enhancing the development of

advanced engineering systems.

Nanotechnology can be defined as “the construction and use of functional struc-

tures designed at the atomic or molecular scale with at least one characteristic di-

mension measured in nanometers (1nm = 10−9m, which is about 1/50,000 of the

width of human hair)” [18]. Nanotechnology R&D can be costly in both time and/or

resources, where experiments in some cases take up to a day for completion [55] and

both the preparation and characterization of materials can be expensive [1]. As nan-

otechnology is expected to impact many sectors of daily life in the near future [37],

it is imperative to address new statistical challenges arising from nanomanufacturing

for both understanding and large-scale production of nanoproducts [18]. As pointed

out in Lu, Jeng, and Wang [37], Basumallick, Das, and Mukherjee [5], and Das-

gupta et al. [18], new challenges introduced in nanoresearch include, and are not

limited to, highly non-linear response surfaces with multiple optima, high experi-

mental costs, and large, irregularly shaped failure regions. We address these issues

based the methodologies and recommendations discussed in Lu, Jeng, and Wang [37],
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Dasgupta et al. [18], and Dasgupta [17].

Concerning the choice of experimental design methods, Lu, Jeng, and Wang [37]

write:

“In some applications, simply full factorial or fractional factorial designs

may be sufficient for model building and process understanding. How-

ever, as shown in several examples, nanofabrication processes can be very

sensitive to small changes in controllable and noise factors. Moreover the

process outcomes may not be continuous random variables. In this case,

irregular designs or new experimental design methods might be consid-

ered. Finally, special experimental constraints due to physical limitations

may limit the use of certain designs.”

In this work, we concern ourselves with addressing the latter challenges expressed

here, cases in which full factorial or fractional-factorial designs are insufficient. More

specifically, based on the problem motivation, we follow the additional advice of Lu,

Jeng, and Wang: “Because the response surface is very rugged, in order to improve

the data collection and analysis methods used in this paper, we recommend the exper-

imental designs (and their extensions) commonly used in computer experiments for

efficiently collecting costly data.” The experimental design strategies proposed in this

work balance space-filling properties, as motivated from computer experiments [45],

and optimization strategies, in turn, providing flexible procedures for optimizing com-

plex response surfaces in high-cost, low-resource scenarios.

A second challenge in nanotechnology is addressed in this work by incorporating

engineering knowledge for modeling and designing experiments. As noted in Lu, Jeng,

and Wang [37]: “When the physical experimentation is costly and time consuming,

the use of computers for process and device simulations is expected to become more

prevalent in nanoresearch.” Engineering knowledge doesn’t just exist in the form

of computer experiments. Other sources include analytical models, expert opinion,

2



and information coming from past experimentation on differing systems. Flexible

methodology is provided to incorporate all these sources in both the modeling and

design stages, even when sources pertain to subregions of the design space and/or have

different levels of relevance to the current system under study. Moreover, emphasis

is placed on the direct interaction of statisticians and engineers, as it is important to

recognize that:

“Nanotechnology is a multidisciplinary subject. When statisticians are

more involved in understanding the issues in nanoresearch, more effec-

tive procedures can be developed to deal with challenging application

problems. Statisticians should be important players in novel scientific

discoveries.” [37]

In the rest of this work, a comprehensive experimental design procedure is de-

veloped to address the challenges discussed above. In the second chapter, an initial

experimental design criteria is proposed for optimization problems by combining mul-

tiple, potentially competing, sources of prior information–engineering models, expert

opinion, and data from past experimentation on similar, non-identical systems. New

methodology is provided for incorporating and combining conjectured models and

data into both the initial modeling and design stages. As a result, the design criteria

is flexible in how it balances space-filling and objective oriented properties in the

presence of conjectured prior information. Relevant literature for modeling engineer-

ing information and designing experiments is reviewed and compared to the proposed

work. To conclude the chapter, an application to a thin-film growth study is provided

in addition to a detailed numerical study of the design properties.

In the third, and final, chapter, a batch sequential design procedure is proposed for

optimizing high-cost, low-resource experiments with complicated response surfaces.

The success in the proposed approach lies in melding a flexible, sequential design

algorithm with a powerful local modeling approach. Batch experiments are designed

3



sequentially in a manner so that they adapt to balance space-filling properties and

the search for the optimal operating condition. In addition, the experimental design

region adapts by balancing the elimination of poor design regions with the focus on

potential optimal design regions. Local model calibration and averaging techniques

are introduced to easily allow incorporation of statistical models and engineering

knowledge, even if such knowledge pertains to only subregions of the complete design

space. The overall process iterates between adapting designs, adapting models, and

updating engineering knowledge over time. Literature is reviewed in relation to the

modeling and sequential experimental design strategies introduced here. Concluding,

performance of the process is demonstrated on a nanowire synthesis system as well

as on an optimization test function.
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CHAPTER II

A FRAMEWORK FOR INITIAL EXPERIMENTAL

DESIGN IN THE PRESENCE OF COMPETING PRIOR

KNOWLEDGE

2.1 Introduction

When studying new and advanced technologies, there is often a lack of understanding

of the true behavior of the process. In such cases, experimental designs are typically

developed for exploratory purposes–spreading out points, in some sense uniformly, in

attempt to understand and model the process as a whole. Since experimentation on

new, advanced systems can be very costly, experimental designs that place points in

regions that have little or no potential for being an optimal experimental input can be

unnecessarily wasteful. Although a process may be new, prior sources of information

can be present: researches can conjecture expert opinion data based on decades of

knowledge; engineering models may exist; and data from past experiments on similar,

yet non-identical, systems can provide insight into the new system.

By leveraging prior information, we propose a novel design criteria to use for solv-

ing optimization problems–problems with a goal of maximizing an objective function.

In this work, we focus on maximizing the probability that a product is produced

within a tolerance limit of a nominal level. The proposed methodology is applicable

for both computer and physical experiments when the initial sample size is fixed be-

fore experimentation. Additionally, it can be used as a stand alone design process

or in conjunction with sequential experimental design procedures such as the SMED

procedure of Dasgupta [17], expected improvement designs (see Santner, Williams,

and Notz [45]), or any other designs for optimization.
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The success of our approach stems from the ability to build an accurate prior

model to estimate an objective function before any experimentation. Prior models

can be any combination of expert opinion data (see Reese et al. [44]), engineering

models, both analytic or metamodels, and data and models from past experimentation

on similar, non-identical, systems. For presentation purposes, the latter source of

information is focused upon, not because of its importance, but due to its absence

from literature. We do not downplay the importance of expert opinion data and

engineering models. They are at least as important as past experimental data on

different systems and, in many circumstances, may be the only reliable sources of

prior information. By introducing a concept of trust, the expressed uncertainty in or

quality of the prior information, all models from prior knowledge are combined into

one, unified model. As a result, three measures are associated with the model at each

design point: the expected value, the variance, and the trust.

A model-based experimental design procedure based off of the unified model is

presented. In particular, a non-trivial modification to a flexible class of experimental

designs known as minimum energy designs [17] is proposed to balance the trade-off be-

tween the space-filling and optimization oriented objectives in the initial experimental

design. The novelty in our design is the direct incorporation of the conjectured nature

of the prior model into the design criteria, in turn, allowing the trust to automati-

cally balance this trade-off. Additionally, we provide details on extending the purely

sequential nature of Dasgupta’s work to select a batch of n points simultaneously.

2.2 Literature Review

The methodology we propose involves new advancements in data modeling and ex-

perimental design. We separately review the relevant literatures in relation to our

work.
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2.2.1 Modeling with Combined Data Sources

Incorporating data from many sources is not a new topic in statistics, extending at

least as far back to meta-analytic literature pioneered by Zeckhauser [57]. The goal of

meta-analytic approaches is to combine information across multiple studies, typically

when only summary statistics are available, to increase the accuracy of the statistical

analysis. For a review of meta-analysis, see Hedges and Olkin [24]. Relying on meta-

analytic literature isn’t sufficient for our purposes for two main reasons. First, meta-

analytic methods typically assume a certain level of homogeneity among the data

sources, whereas the data sources we consider come from very different, competing

sources. Second, before initial experimentation, no observed data is available on

the current system. Instead, information is drawn from expert opinions, engineering

models, and past experiments on similar, non-identical systems.

Combining engineering models with physical data is not a new field in statistics.

Model calibration, in which computer [30] or analytical models [29] are adjusted based

on the collected physical data, is one such approach. Engineering knowledge has also

been used for model building. Zhao et al. [58] built a model by decomposing the

expected response into an analytic engineering model and a Gaussian process model.

Reese et al. [44] proposed a modeling approach to incorporate physical and computer

data with expert opinion data in a hierarchical Bayesian framework. Additionally,

model prediction has been addressed by Craig et al. [16] by using a computer simulator

and past data from the actual, true system.

Our problem formulation differs from these works in one key aspect: no physical

data on the new system is present to include in the modeling or for updating the

computer or engineering models. Hence, new methodology is proposed in the absence

of any “true” data. In particular, we combine all prior sources of information via

a direct interaction with engineers. Additionally, new methodology for incorporat-

ing data from past experiments on similar, yet non-identical, engineering systems is

7



proposed.

2.2.2 Model-based and Space Filling Experimental Designs

Space filling designs, designs in which design points are chosen to spread out “evenly”

over the design region, are common in, but not limited to, computer experiments.

Typical examples of these designs include Latin hypercube, maximin, minimax, and

uniform designs. See Santner, Williams, and Notz [45] for more on these types of

designs. These designs are useful for obtaining a model over the complete design space,

especially when the true response surfaces are quite complex, however, when designing

experiment for process optimization, a global model may not be necessary. Instead,

a design that balances space-filling properties with the optimization objective can be

just as effective and more efficient than designs that simply spread out points evenly.

By using prior sources of information, our design criteria is able to balance the space-

filling and objective criteria so that resources are not unnecessarily wasted on regions

with low potential of satisfying the optimization objective. For a recent approach

in leveraging engineering models to design a computer experiment, see Ba [3], who’s

motivation–efficiently enhancing model prediction–is fundamentally different than our

optimization objective.

Model-based experimental designs exploit a model’s characteristics in order to

more efficiently design an experiment to satisfy some criteria. Traditionally these

designs have been addressed through the alphabetical experimental designs, e.g., A-,

D-, or T-optimal designs. Typically, the goals of these designs are to minimize some

form of variance. For more information, see Federov and Hackl [20]. Recent research

in computer experiments provides additional advances in model-based experimental

design. Approaches include maximizing the entropy, minimizing prediction error, or

maximizing an improvement criteria [45]. Each of these methods relies on a model-

free initial experimental design to collect data, which in turn is used to build a model

8



for follow-up, model-based designs. The initial design plan typically is given little

attention, as experimenters resort to spreading points evenly over the design space.

The novelty of our approach is that initial experiments can be model-based, thus

saving resources from the beginning of the experimental process.

Our initial design plan is based on the concept of the minimum energy design

(MED) proposed by Dasgupta [17]. The basic idea behind MED’s begins with the

assignment of a “charge” to each point in the design space. Following, n points in

the design space are chosen to minimize some form of potential energy. A similar

design, the minimum potential design (MPD), was used by Kessels et al. [31] and

is provided in the statistical software JMP. In MPD’s, potential design points are

essentially assigned an identical charge, resulting in a completely space-filling design.

Alternatively, MED’s allow the charges to vary as a function of the response surface

so that designs can be objective oriented instead of purely space-filling. Dasgupta

introduced this concept to use in a purely sequential experimental design procedure.

We propose a new batch minimum energy design that incorporates the trust model

in addition to the response surface.

2.3 Building a Unified Model

A prior model is built by unifying multiple, competing sources of information into one

model. Information can come in the form of expert opinion, engineering models, and

past data or models from previous experiments on similar, non-identical systems. The

latter data source is focused on here due to its lacking presence in literature, yet we

reiterate that expert opinion and engineering models are just as important and may

be the only existing or reliable sources of information before experimentation. Before

discussing the incorporation of past data on non-identical systems, information on

modeling expert opinion and engineering models is provided.

Eliciting expert opinion from researchers is a complex topic unto itself, combining

9



ideas from both statistics and psychology. A good discussion of such methods and

concerns can be found in Garthwaite, Kadane and O’Hagan [22]. Our methodology

is quite general in that it can include any techniques for eliciting information to build

a unified model. We do not focus on these modeling strategies here, but ensure that,

with a specification of a trust model, models from expert elicitations can be directly

incorporated as one of the competing models. For its ease of use and flexibility, we

base our expert opinion modeling methodology on those expressed in Reese et al. [44].

Details are withheld for the appendix. There is a great wealth on building models

from computer experiments. Interested readers may refer to Santner, Williams, and

Notz [45]. We do not focus on this task but merely mention that these modeling

procedures can be directly used in our approach for incorporating computer data.

When dealing with analytical engineering models, only a mean model, with no spec-

ification of variance, is given. Examples of works incorporating engineering models

can be found in Joseph and Melkote [29] and Zhao et al. [58], who provide modeling

methods when data from the real system are available. If no data is available, as is

the case for designing an initial experiment, other techniques are to be used. We pro-

vide a brief discussion in the appendix on one alternative approach to incorporating

engineering models.

Using data from past experiments on different experimental systems is a topic

that has received little attention, if any at all. Although the past data is coming

from a different system, information can still be gleaned from the past data since

many engineering processes behave in similar, albeit non-identical, manners. In ref-

erence to physical experiments, a great motivating example is provided in Zong and

Watkins [59]. They consider a supercritical fluid deposition (SFD) process: a pro-

cess when a gas is placed under a high pressure resulting in fluid like properties. In

particular, solid material can be dissolved in a supercritical fluid and deposited on a

surface. The kinetics behind supercritical deposition are not well understood, but a

10



similar, yet quite different process, chemical vapor deposition (CVD), is better un-

derstood. If a connection between the CVD and SFD processes can be made, then

when describing properties such as the growth rate of a compound, experimenters

can indirectly rely on growth rates as understood from the CVD point of view.

For a SFD process involving three compounds, Zong and Watkins depict how for

two compounds, the rough, overall trend of the growth rate is captured as described

by the CVD kinetics. For a third compound, they explain how the trend, although

still accurately shaped, is shifted in the domain space. This shift, however, can be

understood based on the differing physics between the role of the third substance in

the CVD process versus the SFD process. In this circumstance, data from past CVD

experiments can be translated to the domain of the new SFD experiment, giving

“data” or conjectured models that can be used as a reference for designing a new

experiment on the new system. We formalize these ideas into a statistical modeling

framework below.

2.3.1 Past Experiments on Non-identical Systems

At the most basic level, to build a model based on previous experiments, a new design

point and a response need to be specified for each design point and response coming

from a previous experiment. Denote the past and current design spaces by Dp and

Dc, respectively, and let ξp ∈ Dp and ξc ∈ Dc denote the experimental designs of

the previous and current experiments, respectively. Here and throughout the paper,

current refers to aspects of the experiment that we are seeking to build a design for.

With the existence of a relationship between past and current systems, pseudo-data

can to be generated as follows:

1. each design point of the previous experiment is mapped to the design space of

the current experiments:

x̃i ∈ ξp 7→ xi ∈ ξc;
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2. the data responses, ỹi, from the previous experiments will be augmented by

adding a value λi to best reflect the expected result of the current system:

ỹi 7→ ỹi + λi ≡ yi.

Two different methods are considered to implement the above steps: updating each

individual design point and response explicitly and updating model parameters, in

addition to the design space by implicitly updating all the design points and responses.

The first scenario arises when there is no statistical or analytical model to begin

with or when model parameters may not have a directly interpretable relationship to

relate the past and current systems. This scenario often arises since, typically, the

importance of literature on new, advanced technologies can be the illustration of a

phenomena’s existence rather than trying to understand the process on a range of

settings. As a result, past experimental data is provided for only a few design points.

For example, Ye et al. [56]present an environmentally friendly method for fabricating

metal nanoparticle-multiwall carbon nanotube composites using supercritical fluid

synthesis. In terms of nanoparticle size, for each of three types of metals, they present

the size measurement for one experimental run, disallowing any formal statistical

treatment for model building.

When converting the previous design points individually, the modeling process

is similar to modeling expert opinion data but with two differences. First, the true

response is not conjectured; instead, the expected difference between the past and

future responses is conjectured. The resulting pseudo-data is not a conjectured mean

response but the past response shifted by the conjectured mean difference. This dis-

tinction leads to a slight difference in modeling compared to existing approaches to

modeling expert opinion data since the lack of knowledge is modeled through the vec-

tor, λ, of the expected differences in the past and conjectured responses instead of Y ,

the conjectured expected response. The other distinction arises from the conversion
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of the design points in step 1. In converting the past experimental data, for each

x̃i ∈ ξp, an expert specifies what he or she believes to be the corresponding design

point xi ∈ ξc. This conversion is only a postulate, so xi cannot be viewed as a fixed,

known value. An additional source of variability needs to account for this uncer-

tainty in the modeling process. In light of these two differences, traditional methods

for modeling elicited data need to be modified. We provide one such modification

procedure in the appendix.

The second scenario for modeling past experimental data arises when model pa-

rameters are interpretable to the extent that the differences between the past and

current experiments can be understood in relation to differences in the parameter

values. For example, Casciato et al. [11] provide a method for generating silver

nanoparticles under high temperature and high pressure. The Arrhenius equation is

used to model the dependence between particle size and temperature. In particular

the mean particle size, y, relates to temperature T in the following manner:

ln(y) = β0 + Ea
1

R · T
,

where R is the Universal gas constant and Ea is the activation energy–an unknown

parameter that needs to be estimated in addition to β0. The activation energy of a

process is a quantity that depends on the compounds involved in addition to other

system settings. Based on the past experiments to produce silver nanoparticles, sup-

pose new experiments are to be conducted to produce copper nanoparticles instead.

Here, Dp and Dc refer to the temperature (input) ranges for the experiments to fab-

ricate silver and copper nanoparticles, respectively. To convert the past data into

psuedo-data for the current system, each temperature x̃i ∈ ξp can be implicitly trans-

lated to its “equivalent” temperature xi ∈ ξc by the translation required to convert

Dp to Dc. Then, since the difference between the reactivity of copper and silver pre-

cursors is understood to some degree based on known differing physical principles,

the activation energy for the new system can be reasonably conjectured based on
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the estimated activation energy of the past experiments. The conjectured change in

activation energy can be used to implicitly define the vector λ to convert each ỹi in

the past experiment to conjectured responses yi for the current experiment. Details

are provided later.

In a different scenario, the domain of a model may need to be converted as well

as the model parameters. Zong and Watkins [59] show that engineering models for

a chemical vapor deposition (CVD) process can be useful for describing the response

function of a certain supercritical fluid deposition (SFD) process, thus, providing a

link between the CVD and SFD processes. In particular, by solving a system of

kinetic equations, they provide the theoretical growth rate of a thin film for the CVD

process, in turn, providing an approximate growth rate model for the SFD process.

When studying certain aspects of the SFD process, they show how the model can be

used almost directly, yet in another instance, they show how this model needs to be

(and can be) changed to reflect a difference between the CVD and SFD processes.

In particular, when studying the effect of the concentration of hydrogen, H2(g), on

the thin film growth rate in the SFD system, Zong and Watkins noted a mismatch

between the observed data and the CVD based model. The appropriate “shape” of

the model was correct, but the location of the model in the experimental domain

was wrong. This mismatch is understood, however, by noting that hydrogen plays an

additional role (two roles total) in their SFD process: it serves as a reducing agent

for metalization as well as to reduce copper oxides. As a result, the hydrogen in their

SFD process in being used more quickly than predicted by the CVD system.

Suppose in the above scenario new experiments are to be conducted on the SFD

system to optimize the thin film growth rate based on the amount of hydrogen con-

centration. Let g̃(x̃) denote the engineering model to describe the growth rate versus

the hydrogen concentration based on the kinetics of the CVD system, where x̃ ∈ Dp,

the experimental domain of the past (CVD) system. In order for g̃(x̃) to be useful
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to design an optimization experiment for the SFD process, the additional role that

hydrogen plays in the SFD process needs to be accounted for before designing the

new experiment. The H2(g) compounds are being used in greater abundance in the

SFD system, so each x̃i ∈ Dp needs to be increased to a value xi ∈ Dc by relying

on engineering knowledge, resulting in the experimental domain of the SFD system.

Following, step 2 of the conversion process is addressed by rescaling g̃ so its “shape”

is maintained on Dc. The resulting conjectured model is then exploited to design an

initial experiment to optimize the SFD system. These ideas are formalized below.

2.3.1.1 Converting Past Experiments by Updating Model Parameters

Consider a model, either statistical or analytical, and data obtained from a past

experiment on a system non-identical to the current system. Denote this model by

f(X̃, β̃), where the tilde indicates that the domain and parameter values are from

the past experiment. Based on a physical understanding of the differences between

the past and current experiments, new parameter values for the current system, β,

and a new domain, X, for which the model is relevant are conjectured. The whole

past domain space, X̃, is mapped to a new space, X, by translation, adding a vector

λX , and/or dilation, multiplying by a vector ωX . In the new domain pertaining

to the new process, parameters for the new process, β, are conjectured in reference

to β̃, the past parameter. Denote the mean of the conjectured model on the new

experimental region by g(X). Then g(X,β) = f(ωX(X − λX),β) by definition.

With the conjecture for the expected value of the model in hand, the past data can

be converted based on the differences between the past and conjectured model.

We do not want to convert the past data by just simply taking the direct difference

between the past and conjectured model, namely g(X,β) − f(X̃, β̃), when setting

X = X̃, since this difference is comparing different “parts” of the curve. Instead, the

difference in the mean models needs to be taken on a comparable domain. To compare
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two models, we consider the difference g(X,β)− g(X, β̃); that is, we compare both

models on the new domain. At each previously observed design point, this difference

quantifies the amount that the past data needs to be augmented to represent an

“observation” from the new experiment.

Conjectured data for the new system is obtained as follows. Let X̃ = [X̃
T

1 ; . . . ; X̃
T

n ]

be the n×k design matrix of the past experiment, ΛX = [λX
T
1 ; . . . ;λX

T
n ] be an n×k

matrix to shift the past domain, and ΩX = diag [ωX ] be a k × k diagonal matrix

to rescale X̃ , where k is the dimension of the design space and the colon denotes

separate rows of the matrix. Define g(X ,β) = [g(XT
1 ,β); . . . ; g(XT

n ,β)], an n × 1

dimensional vector. The new “data”–the design matrix and response vector–is given

by:

X = X̃ΩX + ΛX

Y = Ỹ + (g(X ,β)− g(X , β̃)).

By considering the design points as fixed, a response from the past experiment will

be converted by adding the difference,

g(X,β)− g(X, β̃)) ≈ 5βg(X, β̃)(β − β̃) +
1

2
(β − β̃)THβ[g(X, β̃)](β − β̃),

where we explicitly write a Taylor approximation to emphasize that the data response

shift is coming from the difference in the conjectured and past model parameters. The

Taylor approximation is about the point β̃ and the gradient, 5β, and Hessian, Hβ,

are taken with respect β.

The parameter β and design points X i are subject to misspecification. If the

experimenter specifies the new parameter as µβ, then the parameter is modeled as

β = µβ + δβ, where δβ ∼ N(0, σ2
β); equivalently, β ∼ N(µβ, σ

2
βΣβ). By the same

argument, if an experimenter specifies the new design point as µXi
≡ ωXX̃ i+λXi

,the

design point is modeled asX i = µXi
+δX i, where δX i ∼ N(0, σ2

XΣXi
), ; equivalently,

X i ∼ N(µXi
, σ2
XΣXi

). Lastly, when a model for the expected value of the responses
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is conjectured, it is also subject to misspecification, denoted δy. Even if the mean

response at a specified design point is conjectured to be g(X,β), the true process

mean could conceivably behave like g(X,β) + δy. The addition of bias terms to the

model adds flexibility to the model by not relying on the conjectured quantities as if

they were truly known. The approach we use is similar to the elicitation approach

in Reese et al. [44]. Similar to their approach, we assume the bias term, δy, is

independent of X since no observed data is available to estimate the bias term as is

done in model calibration/adjustment literature [54].

To model the above process, or more specifically, simulate predictions from the

process by Gibbs sampling, we utilize the following hierarchical Bayes model:

Y ∼ N(g(X ;β) + δy, σ
2
yΣY )

β | σ2
y ∼ N(µβ, σ

2
βΣβ)

σ2
y ∼ IG(a, b) (1)

X i
independent∼ N(µXi

, σ2
XΣXi

)

δy ∼ N(θδy , ξ
2
δyI),

where IG(a, b) denotes the inverse gamma distribution with mean b/(a− 1), I is the

identity matrix, and g is the translated version of the past response function f. Ad-

ditional priors can be placed on the hyperparameters as desired. For clarity, consider

the following example.

Example 2.1. Zong and Watkins [59] showed how the models for the film growth

rate of a CVD process could be appropriately adjusted to capture the overall trend of

the film growth rate for a SFD process, providing the following analytical, engineering

based model (known as the rate expression) for the growth rate R :

R =
Ct⊗Ct⊕k4

√
K1K2K3 · [CuL2(g)]

1/2 · [H2(g)]
1/2

2 ·
[
1 +

(√
K1

K2
+
√
K1K2

)
· [CuL2(g)]1/2 + 1

K5
[LH(g)]

]
·
[
1 +
√
K3 · [H2(g)]1/2

] ,
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where the C, k, and K values are parameters representing the active sites for ad-

sorbed compounds, reaction constants, and equilibrium constants, respectively, and

the compounds in brackets represent each compound’s concentration. For example,

[CuL2(g)] represents the concentration of CuL2(g). The parameters for the process

are dependent upon the system under study and are often unknown and need to be

estimated. For simplicity of presentation, we group the terms together, resulting in

the following model to relate one input variable, x, either [CuL2(g)] or [H2(g)], to the

growth rate:

R =
β0

√
x

β1 + β2

√
x
,

where we will restrict β0 for model identifiability. Equivalently, dividing both the nu-

merator and denominator by β0 would have the same effect, but we keep the following

format to better reflect the original model structure. In this setup, [LH(g)] is set at

a nominal, fixed value. Suppose experimental data for a CVD process is available

for studying the relationship between the growth rate and the CuL2(g) precursor con-

centration, while all other concentrations are fixed at nominal levels. Additionally,

suppose a future SFD experiment is to be designed for the purpose of studying how

the concentration of H2(g) relates to the growth rate while all other precursor levels

are fixed at a nominal level.

Recall, H2(g) plays two roles in the SFD process: it serves as a reducing agent

for metalization as well as to reduce copper oxides. Since both of these roles are not

present in the CVD process, to be accurate, the growth rate model needs to be shifted

in the experimental domain to account for the higher H2(g) concentration that is being

used in the SFD process. In addition, the model parameters need to be updated to

reflect the change from studying the effect of [CuL2(g)] versus [H2(g)]. The process of

building the conjectured model for studying the effects of [H2(g)] in the SFD system

would play out as follows:
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1. Based on the understanding of the double role that H2(g) plays in the SFD

process, the needed amount of H2(g) concentration for the model to be accurate

needs to increase. Therefore, a new experimental domain is specified by a shift

to the right by a factor of λX so that each x̃ ∈ Dp is converted to x = x̃+λx ∈ Dc.

Note, the actual point value of the shift may not be specified; an interval for

the amount of shift in the domain may be specified instead. In this case, the

midpoint will be taken as λX , and the width of the interval–the expressed

uncertainty–can be used to specify σ2
X and ΣX .

2. Based on the difference in reaction rates when varying CuL2(g) versus H2(g),

a new parameter value, β, will be conjectured for the rate expression when

studying the H2(g) concentration, thus giving g(X,β). Typically, an exact value

for the new parameter will be unknown, so an interval containing β will be

given. In this case, the midpoint can be taken as the value β, and the width of

the interval can be used to specify σ2
β and Σβ.

3. The difference in the two model predictions is calculated on the comparable

domain as g(X,β)− g(X, β̃).

4. The data from the prior experiment is adjusted based on the calculated dif-

ference in the two models; each response value is converted to a new response

y ≡ ỹ + (g(X,β)− g(X, β̃)).

5. The pseudo-data can then be modeled by Model (1). More importantly to our

methodology, predicted values can be simulated.

A numerical application of the above process is provided in Section 6.

If the new process is well understood in relation to the old system it may be

possible to use a more precise mapping function to map the previous experimental

domain to the new one. In particular, a function g : ξp 7→ ξc could be specified
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to derive the expected value of X i. Additionally, a new model form of the response

could be used by adding new components that are found in the new system and not

in the old system or by scaling the previous model form. For example, the new mean

response model could be γ(X,β)f(X,β) + h(X,β).

2.3.2 Spatially Weighted Averaged Model

All sources of information, whether coming from expert opinion, engineering models,

or past experiments, need to be combined into one unified model to drive the exper-

imental design. The methodology to combine the models must address the following

issues. First, different amounts of trust are put into each model, where the trust

can vary with the design space. For example, an experimenter may be confident in

a model at higher settings of the input variables but less confident in the model at

lower values of the input variables. Second, models do not have to be defined over

identical regions of the design space. For example, at high temperatures, chemical

reactions tend to happen fast, where the limiting step is often the time it takes for

molecules to diffuse together. At low temperatures, however, the reactions tend to

be very slow, so the limiting step is the chemical reaction. At intermediate temper-

atures, both steps may take a similar amount of time, so to accurately predict the

process, a more complex model is needed that includes both phenomena [21]. Lastly,

the design points in each of the models need not be the same. A spatially-weighted

averaged model–where model weights are dependent on the location in the design

space–is proposed to deal with these issues.

Formally, suppose we have a total of M competing models. These M models can

be a combination of many expert opinion models, multiple models derived from many

past experiments, or numerous engineering models. See the appendix for possible

methods of incorporating expert opinion and analytical, physics-based models. Let

uj(x
j
i ) be the trust assigned to model j, j = 1, . . . ,M, at design point xji , i = 1, . . . , nj,
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where nj is the total number of conjectured design points associated with model j.

Note, for engineering models not built from past experiments, no specific design points

are conjectured. Instead, the model is relevant for a complete subset of the current

design space, so trust values can be assigned for a sparse griding of the experimental

region. To extend the “observed” trusts to the complete design space, inverse distance

weighting is used. For models pertaining to the complete design space, the prediction

of trust at an arbitrary design point x ∈ Dc is given by:

ûj(x) =

∑nj
l=1(d(x,xjl ))

−κuj(x
j
l )∑n

l=1(d(x,xjl ))
−κ

,

where d is any distance metric and κ is the power parameter. The choice of κ affects

the influence of the closest observed response on predicting a new value. For larger

values κ, the estimated function acts almost like a step function, while for smaller

values, the estimated function varies more smoothly. A higher value of κ = 6 is

used here, resulting in a step-like function of trust. By using a lower value of κ, the

estimated function can vary too much in between observed trusts. As a result, even

if the trusts of two neighboring design points are the same, in between the design

points, the estimated trust could be higher or lower, which is not intuitive.

For local models–models that pertain to only a subset of the design space–extra

care needs to be taken. Suppose model j∗ is a local model defined on a subset Sj∗. In

addition to specifying a trust for each design point associated with model j∗, namely

xj
∗

i , j = 1, . . . , nj∗ , a set of low or zero trust values needs to be assigned to design

points outside of Sj∗ in order to extend the trust model outside of Sj∗ . These extra

points can be taken from a set of design points of one of the models pertaining to the

entire design space. With this extension, inverse distance weighting can be used to

estimate the trust for any x ∈ Dc.

With the predicted trusts for each model available over the entire design space,
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the model weight for the j-th model at design point x ∈ Dc is defined as

wj(x) =
ûj(x)∑M
j=1 ûj(x)

.

The unified model is defined as

Y (x) =
M∑
j=1

wj(x)Y j(x).

From the above model formulations, we can simulate predictions from the unified

model to use in the experimental design.

2.4 Experimental Design

An objective-oriented initial experimental design must achieve two goals: effectively

explore the entire design space while at the same time, not place too much emphasis

on design regions where the process optima is not likely to exist. By exploiting the

conjectured prior model, these two goals can be balanced by using a minimum energy

design [17].

Minimum energy designs are based on the following principle. If n charged par-

ticles, all with the same sign of the charge, are placed into a box, then the particles

will spread throughout the box before occupying a final position that minimizes the

total potential energy. In the experimental design setting, the “box” is the design

space and the particles are the n potential design points. The total potential energy

of an experimental design with n points is defined as

En =
n−1∑
i=1

n∑
j=i+1

q(xi)q(xj)

d(xi,xj)
,

where d(·, ·) is the Euclidean distance and q(xi) is the charge of the design point xi.

Under this criteria, points with smaller charges are more likely to be included into

the experimental design and are less likely to repel other points away from it.

A similar type of design known as minimum potential designs has been considered

by Kessels et al. [31] and implemented in the statistical software JMP. However, mini-

mum potential designs are restricted to creating space filling designs. Dasgupta’s [17]
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sequential minimum energy designs extended the idea behind these designs to allow

the charges to vary with the location in order to reflect an optimality criteria. In

particular, Dasgupta provided a purely sequential (one point at a time) experimental

design procedure for global optimization, where the experimental designs sequentially

search for a global optimum and explore the design space. Besides incorporating a

different design objective, the main novelty of our design criteria is the direct incorpo-

ration of the conjectured nature of the prior model into the design stage. In addition,

we provide details on extending the minimum energy design procedure provided by

Dasgupta to allow a simultaneously selection of n design points.

2.4.1 Assigning Charges

The charges for each design point must be assigned to reflect the overall goal of the

experiment. For example, if the goal is to maximize a response, then the energies

will be a function of the response. Similarly, if the goal is to produce a product at a

nominal value and to minimize costs, then the energies will be a function of both the

response and the costs. We focus on experiments where the objective is to produce

a product within a certain tolerance range of a target value. Therefore, charges are

assigned to be a function of

p(x) ≡ P (T − d ≤ Y ∗(x) ≤ T + d) ,

where Y ∗(x) is the prior model prediction at design point x, T is the nominal target

value, and d is a tolerance requirement. Intuitively, p(x) is a spatially weighted model

average that our predicted response value will meet our engineering tolerance. Ra-

jagopal and Castillo [43] consider a similar model averaged prediction probability for

process optimization, yet our objective function extends their work in that we average

models locally instead of globally, allowing more flexibility in combining statistical

models.

Define the energy at xi ∈ Dc as q(xi) = (1 − f(p(xi),u(xi)))
γ, where u(xi) is
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a vector with the j-th position containing the amount of trust we put into the j-th

model at design point xi, γ is a tuning parameter, and f is a function containing

the optimality criteria. The value of q(xi) plays an important role in the selection of

the current design. Smaller values are more likely to be selected for the experiment,

and once included in the design, they are less likely to repel other points away from

it. Therefore, the goal is to choose f(p(xi),u(xi)) so that it assigns potential optima

(after accounting for the trust) a lower value of q. Defining q(xi) in such a way, as will

be seen, allows for f(p(xi),u(xi)) to locally control the charges to reflect the prior

model and the trust in the model and γ to control the overall model-based versus

space-filling properties of our design. To choose the function f , the ideal properties

that f should exhibit are considered. To be precise, the following definitions are in-

troduced.

Definition 1. For each i, define p̃(xi) = p(xi)/maxj p(xj) to be the rescaled proba-

bility that our response surface prediction lies within the tolerance limits.

The purpose of rescaling is to spread the probabilities throughout the entire unit

interval as to be able to distinguish them better than if they were clustered into a

small region.

Definition 2. Let m be the median value of the unique set of all p̃(xi). The experi-

mental design is said to encourage the selection of design point xi if f(p(xi),u(xi)) >

m. Otherwise, it is said to discourage the selection of the design point xi.

Definition 3. Let hj(xi) be the distribution of the response surface at design point

xi under model j, j = 1, 2, . . . ,M , and denote the Hellinger distance between the

two distributions given by models j and k at xi by H(hj(xi), h
k(xi)). Define ũ(xi) =
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maxj uj(xi) − α
∑

j<kH(hj(xi), h
k(xi))/

(
M
2

)
, where α is a tuning parameter chosen

to satisfy

0 ≤ α ≤ maxj uj(xi)∑
j<kH(hj(xi), hk(xi))/

(
M
2

) .

The purpose of ũ(xi) is to reduce the amount of trust we put into the overall model if

the individual models are in disagreement. Intuitively, the amount of trust put in the

overall model is the maximum observed trust over all the individual models penalized

by a measure of average discrepancy between the sub-models. The tuning parameter

α will allow engineers to control the magnitude of the penalty given for disagreement

between the individual models.

Lemma 2.1. For a design point xi, 0 ≤ ũ(xi) ≤ 1.

Lemma 2.1 follows directly from the inequality restrictions in Definition 3 along with

the fact that the Hellinger distance is always between 0 and 1. Lastly, we have the

following definition:

Definition 4. We have sufficient trust in our model at the point xi if ũ(xi) > 0.5.

Otherwise, we say we have insufficient trust in our model at the point xi.

Keeping in mind that minimum energy designs favor points with smaller charges,

f should be a function satisfying the following properties:

(P1) f should be bounded between 0 and 1 as to keep the charges positive;

(P2) if p̃(x) is greater (less) than m, f(p(xi),u(xi)) should encourage (discourage)

the selection of xi as long as there is sufficient trust in our prior model at xi;

25



and

(P3) as ũ(xi) increases to 1, f(p(xi),u(xi)) should reflect the information given

by the prior model. As ũ(xi) decreases to 0, f(p(xi),u(xi)) should serve to

normalize the charge to m, the reference value.

Property (P1) is to ensure that the charges remain between 0 and 1 for simplicity

and to ensure that all charges have the same sign. The purpose of property (P2) is

to select design points that will potentially lead to the optimum process condition

and to not select point that are likely to not produce the optimum process condition.

However, the design criteria will only promote this behavior if we have sufficient trust

in our model. If we do not have sufficient trust in our model, then property (P3) says

that the charge should be normalized as to neither encourage nor discourage selection

directly. Instead, these points will be selected in the experimental design depending

on the amount of space-filling properties that are desired.

Proposition 2.1. Let m be the median of the set of all unique values of p̃(xi). The

function

f(p(xi),u(xi)) = p̃(xi) + sgn (m− p̃(xi)) (m−mũ(xi))

∣∣∣∣ p̃(x)

m
− 1

∣∣∣∣ (2)

satisfies properties (P1)-(P3).

Proof. The proof of Proposition 2.1 can be found in the appendix. �

Equation (2) is not the unique function that satisfies (P1)-(P3). This function

is chosen because it applies a simple, linear penalty to the re-scaled probabilities.

Other definitions of f could be derived to incorporate, for example, a quadratic

penalty which would penalize lower trust values more heavily. The intuition behind

equation (2) is as follows. At first, p̃(xi) is considered and then readjusted based on
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the amount of trust given at xi. As the trust level decreases, the second half of the

sum in equation (2) readjusts p̃(xi) by linearly “pushing” it closer to m, the reference

value. For example, if ũ(xi) = 1, when the model is completely trusted, equation (2)

equals p̃(xi). On the other hand, if ũ(xi) = 0, no trust in put in the model, equation

(2) always equals m. As a result of Proposition 2.1, the charges can be defined

as q(xi) = (1 − f(p(xi),u(xi)))
γ, where f(p(xi),u(xi)) is given by equation (2).

Consequently, the experimental design targets regions where the predicted response

is most likely to fall into a pre-specified tolerance interval, yet explores the design

space if an insufficient amount of trust is present.

2.4.1.1 The Choice of γ

The value of γ plays an important role in the design process. It is incorporated

into the design metric so that researchers have the freedom to balance space-filling

properties with the optimality criteria. When γ is set to 0, all the energies are equal,

essentially resulting in a maximin space-filling design [17]. By setting γ to a higher

value, smaller energies shrink to zero faster than larger ones, resulting in completely

object oriented design. Illustrations of the effect of changing γ are presented in

Section 2.5. The magnitude of γ is likely to change on a problem-to-problem basis,

so a universal magnitude to set its value at may not be appropriate. However, some

discussion on selecting γ is provided.

When deciding which γ value to choose, researchers can view different experimen-

tal designs for different values of γ, and based on the results, the “best” γ can be

chosen in an ad-hoc fashion. For one and two dimensional design spaces, the potential

designs can be viewed in their entirety. In higher dimensions, all the combinations

of the input variables can be plotted against each other. The objective is to find the

design that spreads out design points to reflect the overall goals and prior knowledge

of the experimenter. If a researcher is confident in the prior knowledge, then a higher
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γ value can be chosen. For example, if the current system is very similar to a previous

system or if an engineering model is posed based on well known physical phenomena,

then researches can feel more comfortable with a higher γ value. Alternatively, if

the current system is only relatively related to past systems, or if engineering models

have been proposed based on many simplifying assumptions, a lower level of γ can

be chosen to balance the two design objectives.

An additional concern when choosing γ is to make sure that the design is feasible

and practical. For example, a high γ value could put two points so close together that

they result in essentially the same experimental run. For example, if the temperature

of a system can only be controlled within ±5 degrees centigrade of the actual tem-

perature, then two experimental runs that are less than 10 degrees centigrade apart

are not distinguishable. In such a scenario, γ should be chosen under the constraint

that no two points are too close together. Similarly, a high value of γ may result in

two points that are distinguishable with regards to the actual experiment but that

may still be neighboring points. As a result, the experiments conducted at these

two points could potentially provide the same information. Note, this “distinguisha-

bility” of potential design points should be addressed when selecting the grid (e.g.,

orthogonal array [52]) for potential design points.

The advantage of using a higher value of γ is that the optimal system operating

condition could be found by using less resources, provided that the prior model is

relatively accurate. However, if the prior model is inaccurate, a high value of γ could

lead to a design that places too many points in the wrong region, requiring additional

resources for follow-up designs. The advantage of using a small value of γ is that

the design points will fill the design space like a traditional space-filling design so

that the process can be characterized as a whole. However, if the prior knowledge is

reasonably accurate, the experimenter would have missed out on an opportunity to

find the optimal system setting with fewer resources. This balancing act needs to be
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considered on a case-by-base basis.

2.4.2 Experimental Design Search Region

The optimal experimental designs discussed here are found by scaling all input factors

to the unit interval, thus transforming the experimental region into a unit hypercube.

In addition, further constraints will be placed on the experimental region to encourage

better space-filling properties. The following constraints may be too restrictive for

physical experiments where the experimental design is chosen, for example, from an

orthogonal array [52] where factors are not assigned a large number of levels, so

caution should be exercised when applying these constraints on an ad hoc basis. In

scenarios when design factors can have a large number of levels, often occurring in

computer experiments, these constraints are potentially useful.

Minimum energy designs are related to minimum potential and maximin designs,

where both encourage the minimum distance between any two design points to be,

in some sense, maximal. This is one (of many) desirable property for space-filling

designs, yet under smaller sample sizes, points are forced to the boundary of the design

region, which is hardly space-filling at all. Consequently, minimum potential designs

are restricted to the unit hypersphere to remedy this issue. Similarly, the search

region for the experimental designs here is first restricted to the unit hypersphere

and then adjusted to ensure that potentially optimal design regions have not been

removed from the search region. The search region is found as follows:

1. Grid the unit hypercube into g × g squares;

2. Restrict the set of points in step 1 to the unit hypersphere, resulting in the

removal of 2d disjoint subsets, where d is the number of design factors. Denote

these subsets by Ri, i = 1, . . . , 2d;

3. For each Ri, find the number of points in Ri that satisfy f(p̃(xi), ũ(xi)) > m.

Denote the set of points in Ri satisfying this property by Si;
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4. If Si contains multiple, non-neighboring points of the boundary of the hyper-

sphere, then include Ri back into the search region.

This choice of the search region is hardly restrictive: it can very quickly and easily

be found and is in agreement with the desired properties of the design. In particular,

design points where f(p̃(xi), ũ(xi)) > m are to be encouraged for selection. Regions

with points satisfying this requirement are added back to the search region if they

were removed when restricting the unit hypercube to the unit hypersphere. In regions

not containing design points satisfying this property, space-filling properties are to be

emphasized when resources are available. The restriction to the hypersphere forces

design points off the boundary of the unit hypercube. As a result, the whole region can

be characterized by moving points off the boundaries. Lastly, note that by setting

γ = 0, the goal is to produce a completely space-filling design. The search space

should always be restricted to the hypersphere in this case. Similarly, if zero trust is

given to a region near a corner of the design space, the hypersphere restriction can

be used in that corner.

2.4.3 Exchange Algorithm

An exchange algorithm [19] is used to find the design the minimizes the total energy.

For the current design region, Dc, the goal is to find n points, x1, . . . , xn ∈ Dc to

minimize

En =
n−1∑
i=1

n∑
j=i+1

q̂(xi)q̂(xj))

d(xi,xj)
.

It should be understood that here, Dc only consists of the points in the search region

as discussed in the previous section. The general idea behind exchange algorithms

is that a proposed solution is updated by exchanging a current design point with a

potential design point, given that the potential design point (in this case) reduces the

total energy. An exchange algorithm for minimizing the total potential energy works

as follows:
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1. Denote the current design region by Dc. Randomly select n points from Dc,

denoting these points by the vector d = (d1, d2, . . . , dn);

2. Set i = 1;

3. Calculate the current total energy for the vector d, and denote its value by Ec;

4. For each point xj in the design space Dc\d, replace di with xj and calculate

Ei,j, the total energy when di is replaced by xj. Let E∗i = minj Ei,j and x∗ be

the corresponding design point to E∗i . If E∗i < Ec, exchange di with x∗, i.e., the

i-th element of d is replaced with x∗. Set i = i+ 1;

5. Repeat steps 3 and 4 until i = n+ 1, at which point, go to step 6;

6. Repeat steps 2 through 5 until no more exchanges are made or the maximum

allowable iterations is achieved. The final value of d is used as the initial design.

Step 4 can efficiently be calculated by noting that when replacing di with candidate

point xj, Ei,j can be decomposed as

Ei,j = Ec −
n∑

k=1,k 6=i

q̂(di)q̂(dk))

d(di, dk)
+

n∑
k=1,k 6=i

q̂(xj)q̂(dk))

d(xj, dk)
.

Therefore, the total potential energy of the proposed design doesn’t have to be com-

pletely re-calculated at each step, but instead, can just be updated by removing the

energies corresponding to di and adding the energies corresponding to xj. Since ex-

change algorithms are dependent on the starting design, it is recommended to run

the algorithm multiple times with different starting points. The design from these

repetitions with the minimum energy should be selected.

2.4.4 Modifications to Address Poor Prior Information

The experimental design is predicated on the fact that reasonably accurate prior

information is available to build an initial model, however, this model cannot be
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validated until data is present. It is therefore important to be able to make the

design plan more robust in cases where the prior information is potentially inaccurate.

This goal can be achieved by reducing the number of design points invested into the

minimum energy design plan (discussed thus far), followed by the incorporation of

additional points that satisfy some space-filling criteria. The idea is to fill in the

“gaps” of the optimization-based design with a space-filling design. In particular, to

create an initial design with n design points, the modified design works as follows:

1. Choose n1 < n points based on the optimal design criteria discussed thus far.

Denote this design by ξ1;

2. Choose the remaining n2 = n − n1 design points from Dc\ξ1 to minimize the

space-filling criteria: ∑
xi,xj∈Dc\ξ1

1

dm(xi,xj)
+

∑
xi∈ξ1,xj∈Dc\ξ1

1

dm(xi,xj)

1/m

,

where dm is a distance metric. For example, for m = 1 and m = 2, the distance

corresponds to rectangular and Euclidean distances, respectively.

The metric in step 2 is a common metric to measure space-filling properties [45] and

was used by Ba [3] for similar purposes. Notice when m = 2, the metric in step 2 is

equivalent to the minimum energy design criteria when all the charges are set to 1. By

splitting the design into these two steps, part of the resources are explicitly dedicated

to the optimality criteria while the remaining resources are explicitly dedicated to

space-filling properties. As a result the initial design can still be efficient while at the

same time, have an “insurance policy”.

2.5 Numerical Properties

We illustrate numerical properties of our procedure on one and two-dimensional sim-

ulated datasets. In particular, the effects that γ and ũ(x) have on the space-filling

properties are explored. Additionally, the role of sample size is examined.

32



2.5.1 One-dimensional Example with Known Model

Consider a model in the unit interval given by

g(x) = 10 + 20(x− 0.5)3 − x+ ε,

where ε ∼ N(0, 1). For illustration, suppose the goal is to find the optimal input to

produce a product within the interval [9.5, 10.5], i.e, T = 10 and d = 0.5, noting that

the optimal input occurs at approximately x = 0.85. For this example, the response

surface is considered as known, n = 6 and the design space is gridded into intervals

of length 0.001. Figure 1 shows how the experimental designs change when changing

γ and ũ(x). When studying the properties of γ, ũ(x) = 0.75 for the entire design

space, and when studying ũ(x), we consider constant levels of trust for the whole

region while γ is fixed at 1. As γ increases, the space-filling properties decrease,

resulting in more points being placed near the optimal region. Similarly, the space-

filling properties of the design decrease as ũ(x) increases (and γ is held constant). As

the model is trusted more, the design points are placed to target the region in which

the optimal value is expected.
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Figure 1: This figure shows (left) the wffect that changing γ has on the experimental
design and (right) the effect that the amount of trust has on the experimental design
(holding γ constant).

The trust is a flexible measure that does not have to (and typically won’t) remain

constant over the entire design region. To illustrate the effect of varying trust over
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the design region, consider the same scenario as above, but where the level of trust

is split at the point x = 0.5. In Figure 2, different designs are shown where ũ(x)

equals 0 for x < 0.5 and varies (as labeled) for x ≥ 0.5. In the center and right plots,

γ equals 0.5 and 1, respectively. For the lower input values, the design focuses on

space-filling properties, while when x ≥ 0.5, the design places more emphasis on the

optimality criteria as the trust increases. As a result, the points cluster around the

true optimal input with high level of trust. When γ = 1, the points tend to cluster

faster than when γ = 0.5, resulting on less emphasis on the space-filling properties.
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Figure 2: This figure shows the effect of splitting the trust model at the point x = 0.5.
The left plot displays how the trust is split. For the center plot, γ = 0.5, and for the
right plot, γ = 1.

Alternatively, suppose for lower input values (x < 0.5) the trust varies and for

higher input values (x ≥ 0.5) no trust is put in the model. Figure 3 depicts the

results. In the center and right plots, γ equals 0.5 and 1, respectively. Since the true

optimal input is greater than 0.5, but no trust is given to the model in that region,

only space-filling properties are emphasized. Note, the function g never equals 10

when x < 0.5. As a result, the design points only converge slowly to the best input

for x < 0.5.
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Figure 3: This figure shows the effect of splitting the trust model at the point x = 0.5.
The left plot displays how the trust is split over the design region. For the center
plot, γ = 0.5, and for the right plot, γ = 1.

2.5.2 Two-dimensional Example with Known Model

Consider the Branin function given defined by:

g∗(x∗1, x
∗
2) =

(
x∗2 −

5(x∗1)2

4π2
+

5x∗1
π
− 6

)2

+ 10

(
1− 1

8π

)
cos(x∗1) + 10,

where −5 ≤ x∗1 ≤ 10 and 0 ≤ x∗2 ≤ 15. Suppose the true system behavior is defined

by the Branin function rescaled to the unit square and modified resulting in

g(x1, x2) =
400 + g∗(x1, x2)

20
+ ε,

where x1 = 15x∗1 − 5, x2 = 15x∗2, and ε ∼ N(0, 1). For illustration, suppose the

goal is to find the optimal input to produce a product within the interval [19, 21],

i.e, T = 20 and d = 1, and note that the optimal input occurs at approximately

(x1, x2) = (0.55, 0.15). Figure 4 shows the effect of changing γ on the proposed

minimum energy design. In particular, the space-filling properties decrease as γ

increases. For this example, the response surface is considered as known, the design

space is gridded into 0.05 × 0.05 squares, n = 20 and ũ(x) = 0.75. Considering the

same setup, the effect of different values of trust are studied with a fixed value of γ.

As seen in Figure 5, as the trust increases, the optimality criteria is emphasized.

Figures 6 and 7 display the effects of when the levels of trust are not equal over

the entire design space. In each figure, the assignment of trust levels is specified in
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Figure 4: Experimental designs for varying values of γ overlaying the true response
surface are shown. For the designs shown here, ũ(x) = 0.75 for all x.

the upper left plot, and the effects of changing γ are shown in the remaining three

plots. In Figure 6, the lower two quadrants have a higher level of trust than the upper

two. Since the lower two quadrants (especially, the lower right quadrant) contain near

optimal system inputs and because a higher level of trust is given to these regions,

more design points migrate to these regions as γ increases. Alternatively, in Figure 7,

the upper two regions are assigned higher trust levels. Since the upper left quadrant

contains a near optimal input and a higher level of trust, points migrate to that region

as γ increases, lending fewer design points to the lower two quadrants.

2.5.3 Role of Sample Size

The sample size plays an important role in designing experiments and has been ad-

dressed (for computer experiments) by Loeppky, Sacks, and Welch [36] who provide

the following rule of thumb: 10 runs per dimension. Up until this point, samples
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Figure 5: Experimental designs for varying levels of trust overlaying the true response
surface are shown. For the designs shown here, γ = 0.4.

of size 18 have been used for the two-dimensional examples. Since the sample size

can play an important role in the effectiveness of exploring the design space, smaller

sample sizes are considered here. Figure 8 shows experimental designs using 8 design

points with varying values of γ and ũ(x) (as labeled on the plots). The main defi-

ciency in using a small sample size occurs when low values for both γ and ũ(x) are

present. In such a scenario, the goal is to emphasize the space-filling properties of the

design, but with a small sample size, all the points are pushed towards the boundary.

A traditional space-filling design (e.g., minimax, Latin hypercube, etc. [45]) would

be more appropriate in this case. The use of a larger γ in conjunction with a larger

value of trust results in placing few or no points in potentially non-optimal region.

However, this effect also presents itself in larger samples and by the choice of γ, can be

subdued in larger sample sizes when enough resources are available to divide amongst

the two design objectives.
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Figure 6: This figure displays the results of splitting the trust over the design space
as shown in the top left plot. The remaining plots show the designs for differing
values of γ.

Figure 9 shows four designs with varying levels of trust and values of γ (as labeled

on the plots) for samples of size 12. By increasing the sample size by four points (12

points total), the space-filling properties are satisfied much better for both low-trust

cases. For the higher trust cases, the designs only focus on the optimality criteria.

By tuning γ to a lower value, it is likely that a balance can be struck between the

two design objectives (as seen in the upper left plot in Figure 9).

2.6 Application to Thin Film Deposition Process

Zong and Watkins studied the thin film growth rate from a supercritical fluid deposi-

tion (SFD) process, and related this rate to that of the much better studied chemical

vapor deposition (CVD) process. In their SFD process, a substrate and precursor

are loaded into a closed reactor, followed by the introduction of supercritical carbon
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Figure 7: This figure displays the results of splitting the trust over the design space
as shown in the top left plot. The remaining plots show the designs for differing
values of γ.

dioxide. After the system conditions are maintained for one hour, ensuring the disso-

lution of the precursor into the carbon dioxide, hydrogen was loaded into the reactor.

The reactor was then heated to 250 ◦C and allowed to react for five minutes. One

of several quantities of interest, the film growth rate, was measured. As discussed in

Example 2.1, the better understood kinetics of a CVD process was used to propose a

growth rate model for the SFD process and was shown to be approximately accurate

under some circumstances, while in others, adjustments needed to be made based on

known differing aspects between the CVD and SFD processes. This link could allow

previously collected data on a CVD system to guide future experimentation for the

SFD system. For our application, however, we consider a simpler case based on the

data provided in Zong and Watkins [59].

Consider the “past” experiment to be the experiment conducted in Zong and
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Minimum Energy Design: n=8, U(x)=0.25, Gamma=0.25
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Minimum Energy Design: n=8, U(x)=0.75, Gamma=0.25
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Figure 8: This figure shows the effect that sample size has on design space explo-
ration. Samples of size 8 are considered.

Watkins [59] which studies the effects of the CuL2(g) concentration on the thin film

growth rate, R, in a SFD system. An analytical model was proposed and shown

to approximate the behavior of the growth rate versus CuL2(g) concentration. In

particular, the following model is used:

R =
Ct⊗Ct⊕k4

√
K1K2K3 · [CuL2(g)]

1/2 · [H2(g)]
1/2

2 ·
[
1 +

(√
K1

K2
+
√
K1K2

)
· [CuL2(g)]1/2 + 1

K5
[LH(g)]

]
·
[
1 +
√
K3 · [H2(g)]1/2

] , (3)

where the C, k, and K values are parameters for reaction rates and the compounds

in the brackets, for example, [CuL2(g)], represent the compound’s concentration. In

this example, the concentration of LH(g) is set a nominal, fixed value. For ease of

illustration, we group terms together, resulting in the following nonlinear model to

relate one input variable x, either [CuL2(g)] or [H2(g)], to the growth rate:

R =
β0

√
x

β1 + β2

√
x
. (4)

For model identifiability and to keep the same model structure, we fix β0 = 100 for
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Minimum Energy Design: n=12, U(x)=0.25, Gamma=0.25
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Figure 9: This figure shows the effect that sample size on design space exploration.
Samples of size 12 are considered.

illustrative purposes. Alternatively, the numerator and denominator can be divided

by β0 to reduce the number of parameters. In reference to the knowledge of this

past experiment, suppose we want to design a future experiment on the SFD system

to study the relationship between the concentration of H2(g) and the growth rate,

where it is known that Model (3) may be accurate after some needed adjustments.

Using our methodology, the data for the past experiment–when studying [CuL2(g)]–

can be linked to the future experiment–when studying [H2(g)]–through updating the

parameters and design space of Model (3). The data (as given in Zong and Watkins)

for the past experiment studying the effect of the CuL2(g) concentration is shown

in Table 1. Figure 10 shows the plotted data along with the nonlinear least squares

estimated model–the parameter values being β̃1 = 0.1968 and β̃2 = 3.2844.

The goal of the new experiment to be conducted is to relate the H2(g) concentra-

tion to the growth rate, R. In particular, suppose a target value for growth rate is
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Table 1: Data relating the CuL2(g) concentration to R is shown. Data is taken from
Zong and Watkins [59].

[CuL2(g)] (wt.%) R (nm/min)
0.010 17.429
0.012 18.722
0.015 21.157
0.022 23.663
0.057 25.997
0.110 27.175
0.121 23.208
0.171 26.215
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Figure 10: The past experimental data on studying the effect [CuL2(g)] on R is shown
along with the estimated model. Data points are from Zong and Watkins [59].

set at T = 21 nm/min with a tolerance of d = 0.5 nm/min. Model (3) was based

on the kinetics of a similar system, a CVD process, yet it is known that H2(g) plays

an additional role in the SFD process which doesn’t exist in the CVD process. So

although it is believed that the functional form will be similar, it can be conjectured

a priori that the model’s domain needs to be changed to reflect this difference. Addi-

tionally, new parameter values will have to be conjectured based on differing reaction

rates that will occur when the concentration of H2(g) is varied as opposed to that of

CuL2(g). In particular, suppose an experimenter conjectures that the double role the
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Table 2: Conjectured data relating the H2(g) concentration to R are listed.

[H2(g)] (wt.%) R (nm/min) u(x)
0.0352 9.5882 0.75
0.0374 11.1111 0.75
0.0395 13.7833 0.8
0.0473 17.1949 0.8
0.0820 22.7729 0.8
0.1352 27.1316 0.8
0.1457 23.6480 0.4
0.1955 28.5641 0.4

H2(g) plays in the reaction will cause the previous model to be shifted by a factor

between [0.02, 0.03], i.e., λXi = .025 for all i. Based on a postulated difference in

the reaction rates that is to be expected when studying [H2(g)] instead of [CuL2(g)],

suppose it is conjectured that β1 ∈ [.65, .80] and β2 ∈ [1.5, 1.9], i.e. µβ1 = 0.725 and

µβ2 = 1.7. Note, we present the conjectured parameters in terms of intervals, which

is often the case in which conjectures arise due to experts’s uncertainties. The inter-

vals also give additional information about how we may set the variance parameters

in Model (1) by interpreting the endpoints as the values giving the inner 95% area

of a normal probability distribution. The augmented (postulated) data is shown in

Table 2 along with the specified levels of trust at each design point. With the conjec-

tured data at hand, the parameters in Model (1) can be simulated, in turn, allowing

for predicted values to be drawn. Table 3 lists the parameter values used in Model

(1). The estimated model parameters are β1 = 0.8 and β2 = 1.8.

To more completely illustrate our methodology, suppose, in addition to the past

data, expert opinion data was given as in Table 4. The data is in a similar format

as to that in Reese et al. [44], from which we will use their technique to model such

data. See Reese et al. for details and notations. From this data, the following

linear model is selected as the best model: y∗i = 0.8148 x∗i + 0.1033 (x∗i )
4 + εi, where

εi ∼ N(0, 0.3443) and y∗ and x∗ are the normalized values of y and x, respectively.
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Table 3: Parameter values used for Model (1) are listed.

Parameter Value
µβ (0.725, 1.700)
σβ

2 (0.0014, 0.0104)
Σβ I2×2

µXi
X̃ + (0.025)18×1

σ2
X 0.003
a .0001
b .0001
θδy 0
ξ2
δy

1

Table 4: Sample expert opinion data are shown.

xo,1 yo qξ uo
.025 20.5 21 .5
.05 21 21.5 .8
.075 20 21 .8
.1 23 24 .8

.125 23.5 24.5 .65
.15 24 25.5 .5
.175 26 27.5 .4
.2 .5 30.5 .4
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Using the two models–the past experimental and expert opinion models–we calculate

ũ(xi) by calculating the Hellinger distance by using Gaussian approximations to the

posterior predictive distributions and using α = 0.1. Figure 11 shows the estimated

mean models based on the past experimental data, expert opinion data, and the

unified model. In addition, the “unknown” data relating [H2(g)] to the growth rate–

also given in Zong and Watkins [59]–is plotted.
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Figure 11: Past experiment, expert opinion, and unified models (along with the
“unknown” data) for describing the growth rate versus H2(g) concentration are shown.
Data points come from Zong and Watkins [59].
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Figure 12: A plot of experimental designs for different γ values is shown.
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Figure 13: Smoothed plots of ũ(x) and of the energy versus H2(g) concentration are
shown for varying values of γ.

The experimental designs for different levels of γ are shown in Figure 12. It is

clear that the designs focus more on the optimality criteria as γ increases, which

is seen by the clustering of points near 0.6–the location that the model predicts a

response at the target value. To understand how the energies and adjusted trusts

affect the experimental design, consider the plots of the energy and ũ(xi) versus the

input variable, [H2(g)], shown in Figure 13. From the plot of ũ(x), we see that there is

a low level of trust for higher values of [H2(g)]. In terms of the effect that this property

has on the design, we see that the experimental design–especially for lower values of

γ–tends to focus on space-filling properties for the higher input range (where the level

of trust is low). Additionally, the plot of energy versus the design space, with varying

values of γ, displays distinct regions with relatively low energy values, resulting from

the combination of both high trust and a “good” value of the unified model. On the

other hand, even with sufficient trust in the unified model for low values of [H2(g)],

the energy values for this region are high due to the model predictions being far from

the target value. As a result, the experimental design, no matter the value of γ,

places at most one design point in that region. Notice that as γ increases, regions

with lower energy values are more pronounced, illustrating how γ plays a role in
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globally controlling the design. Selecting which value of γ to use is the decision of

the experimenter and can be chosen in accordance with the discussion we provided.

For comparative purposes and to emphasize the importance of using good prior

information, we consider the experimental designs when the past experimental data

is not converted to reflect the behavior of the current system. All other aspects of the

modeling, e.g., expert opinion and trust models, are kept the same as before. We still

consider the past experiment to be the one when studying the effects of [CuL2(g)] on

the growth rate of the film and the experiment to be conducted to be the one when

studying the effects of [H2(g)] on the growth rate of the film. Figure 14 show the

initial designs versus varying γ. Recall that the optimal value, based on the limited

data provided in Zong and Watkins [59], is around 0.06. In this case, as γ increases,

the design points cluster more and more around 0.35, the wrong optimal value. As

seen, for higher values of γ, not spending time to carefully conjecture a good prior

model can lead to bad consequences. The designs with low levels of γ are more along

the lines of traditional space-filling designs which are typically used when there is no

consideration to build a prior model.
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Figure 14: A plot of experimental designs for different γ values are shown for the
case when the past experimental data is not converted.
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2.7 Conclusion

In this work, a framework for combining data from multiple sources of information for

designing an initial experiment for new and advanced technology is provided. Such

initial experimental design plans can be used as stand alone designs or as an initial

experiment to jump-start a sequential design scheme. Differing from previous works,

we provide a methodology to incorporate data coming from previous experiments on

non-identical systems and discuss real scenarios in a nano-manufacturing context to

illustrate the applicability and potential benefit of our methodology. Additionally,

we provide a new flexible method for local model averaging by incorporating a spa-

tially varying trust model, allowing for the emphasis and deemphasis of each model

in regions where the model is conjectured to be accurate or inaccurate, respectively.

Lastly, we provide a new minimum energy design criteria to incorporate both a re-

sponse surface and a trust model. Through simulations, we show that our design

criteria can lead to efficient initial experiments by targeting regions that possibly

contain a potential optimal value and by placing fewer design points in regions where

an optimal value is less likely to occur. The balance between the space-filling and

optimal design criteria are dependent upon the trust model (at a local level) and a

tuning parameter (at the global level), giving experimenters the freedom to control

the trade-off of these properties. Concluding, we illustrate our methodology for de-

signing an initial experiment where the end goal of experimentation is to find the

optimal growth rate in a supercritical fluid thin film deposition process. The exper-

imental designs change based on the trust model and global tuning parameter, and,

moreover, when reasonably accurate updates to past experimental data are possible,

our methodology for modeling past experimental data on non-identical systems can

give better results than ordinary space-filling designs. Consequently, in the pres-

ence of expert knowledge, our initial design plan potentially saves resources in the

experimental design process.
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CHAPTER III

MODEL ROBUST PROCESS OPTIMIZATION THROUGH

BATCH SEQUENTIAL DESIGNS: A LOCAL APPROACH

3.1 Introduction

When studying new, advanced technologies, new statistical challenges can arise, re-

sulting in the need for new methodology to accurately and efficiently address these

challenges. Nanotechnology is no exception. As nanoscience is becoming important

in both scientific and non-scientific communities alike, new statistical challenges are

being introduced to accommodate the needs of this emerging field. These challenges

include, yet are not limited to, large unknown design regions and highly non-linear re-

sponse surfaces with multiple local optima and non-convex failure regions [18]. These

attributes present challenges in both the design and analysis of such systems. In

order to expand nanoprocesses to large scale production, new statistical advances to

accommodate these statistical challenges need to be developed. For more on statisti-

cal methods in nanoscience, see Lu et al. [37].

The experimental design and analysis challenges introduced in nanotechnology

are not adequately addressed by existing design literature. Fractional factorial de-

signs and orthogonal arrays [52] can require a prohibited number of runs which prove

too costly for process optimization. Space filling designs [45], although allowing for

flexible modeling, can also require too many runs in addition to wasting too many

resources on no yield regions. Casciato et al. [10] and Kim [32] addressed designing

experiments in a nanomanufacturing scenario for modeling both the response and

failure region of a system. Additionally, Kim [32] and Casciato et al. [9] provided

a flexible batch sequential methodology, termed Layers-of-Experiments (LOE), for
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optimizing a nanoparticle deposition process. Woo [51] provided further study on the

LOE procedure in addition to provided a Gaussian process modeling approach where

the design region contains a failure region. Other advancements include using sta-

tistically designed experiments to optimize the growth quality of ZnO nanowires [55]

and new methodology in modeling the synthesis of nanostructures [18]. In addition,

Dasgupta [17] and Joseph, Dasgupta, and Wu [27] provided a sequential design pro-

cedure, termed sequential minimum energy designs (SMED), for optimizing the yield

in a nanowire synthesis system characterized by a large, no yield regions along with

a highly, non-linear response surface with multiple local optima.

A good design procedure may not be enough to efficiently optimize complex sys-

tems as found in nanoscience. Alternatively, a flexible, adaptive modeling procedure,

along with a sequential design, can provide a more powerful and efficient process of

study. Under limited resources, however, a purely data-driven statistical approach

may not be enough for efficiently optimizing a complex, high-cost process, so it is

important that engineering knowledge can easily be incorporated into the modeling

and design methodologies. To this end, we provided a complete and efficient batch

sequential experimental design and analysis procedure that easily allows the incor-

poration of expert knowledge in the form of engineering models, expert opinion, and

past experimental data on similar, non-identical systems (as discussed in Vastola et

al. [46]).

Two new approaches in incorporating engineering knowledge into the modeling

process are introduced: local model calibration and local model averaging. By taking

a local approach to modeling, both statistical models and engineering information can

be combined, even in the scenario that each piece of information only pertains to a sub-

region of the complete design region. In addition, a new batch sequential experimental

design procedure, motivated by the principles of the Layers-of-Experiments approach

in Kim [32], is provided in which both an adaptive design region and combined-design
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criteria are introduced.

3.2 Literature Review

The methodology we propose is a complete process optimization scheme that includes

new methodologies in both experimental design and statistical modeling. We review

the relevant literatures separately below.

3.2.1 Review of Sequential Designs for Optimization

A good review of sequential designs for optimization in the nanotechnology setting is

given in Dasgupta and Joseph, Dasgupta, and Wu. In particular, arguments for the

necessity for designs to be able to deal with systems containing non-convex failure

regions and highly complex response surfaces are given. We briefly review the litera-

ture here and refer readers to Dasgupta [17] and Joseph, Dasgupta, and Wu [27] for

further details.

Arguably, the most popular methods for sequential optimization include probabil-

ity of improvement (PI) and expected improvement (EI) criteria [26]. Both methods

rely on first using a space-filling design to estimate a kriging model [45] and then based

on this model, choose the next design point to maximize the PI or EI. Dasgupta [17]

and Joseph, Dasgupta, and Wu [27] point out that although PI and EI algorithms

have some nice theoretical properties, they may suffer in nanotechnology research due

to two reasons. First, the initial kriging model requires a moderate amount of initial

experimental runs to accurately represent the response surface, many of which would

be placed in no-yield regions. By incorporating engineering models, our proposed

methodology can efficiently estimate an initial model under a sparse allocation of re-

sources to the initial design. Second, they point out that the accuracy of the kriging

model can suffer from the amount of no-yield (or non-response) regions, as a result,

misleading the follow-up experimental designs.

Other types of sequential experimental design procedures for optimization use an
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adaptive design region. Response surface methodology (RSM) [8] is a traditional ap-

proach using a gradient based method to search for the optimal value. As pointed out

in Dasgupta et al. [18], under highly complex surfaces it is unlikely that the simple

modeling structures used in RSM will be able to capture the true response behavior.

Other modern gradient based methods are the STRONG [14] and STRONG-X [15]

procedures which follow the trust region approach in simulation optimization liter-

ature. These approaches, however, require far too many runs for space exploration

and optimization in high-cost, low-resource experiments. Other procedures (SEL [53],

SELC [39], and G-SELC [38]) focus on eliminating regions (or points) from the design

space, yet, as discussed in Dasgupta [17] and Joseph, Dasgupta, and Wu [27], these

methods require too many experimental runs in a high-cost, low-resource scenario.

Another approach is the Grid Algorithm of Wissmann and Grover [49, 50] in which

the experimental domain is updated based on the most probable model amongst

competing models. Reducing the design space resulted in more efficient designs, how-

ever, their proposed design criteria was sensitive to model misspecification, and their

method didn’t account for the uncertainty in model selection (e.g., through model

averaging).

Motivated by the Grid Algorithm of Wissmann and Grover [49, 50], a recent

approach that uses an adaptive region and adaptive design criteria is the Layers-of-

Experiments (LOE) methodology provided in Kim [32]. The key principles in the

LOE approach are:

1. sequentially update the design region in a flexible manner so that it can contract

or expand to include potential optimal regions;

2. sequentially update a compound design criteria to emphasize exploration versus

the optimality criteria; and

3. sequentially build local models on updated design regions.
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Although an effective procedure, no methodology for directly incorporating multiple

sources of information is provided, the adaptive design criteria relies on D-optimality,

and the models are restricted to be linear, or at least, linearly adjusted (when con-

sidering engineering models). The methodology presented here, based on the LOE

principles, provides a more flexible LOE procedure that directly incorporates multiple,

competing sources of engineering knowledge.

3.2.2 Review of Model Averaging and Model Calibration

Model averaging is a technique that has frequently been used in order to obtain

“better” models by taking into account the uncertainties in model selection. For a

more complete review, refer to Hoeting et al. [25]. Traditionally, model averaging

is applied in a global setting, in which a model’s “usefulness” is assessed over the

entire input domain [25, 43]. Local approaches in model averaging have recently been

considered [33, 41], where in the former approach, model averages are taken point-

by-point in a spatial setting and in the latter approach, data is binned into regions

where model averaging is done in each bin. Considering model averaging on a point-

by-point basis only allows for weights to be estimated where data are observed, and to

estimate weights at a given design point, only the data at the specified design point are

used. The binning procedure requires lots of data and is useful in a non-parametric

setting, however, many physical and computer experiments are expensive or time

consuming to run and, thus, only limited data are available. Differing from these

works, we propose a kernel based method to calculate model weights (posterior model

probabilities) in the presence of competing statistical, computer, and/or analytical

engineering models. The advantage of our approach is two-fold: the local strengths

of competing models are emphasized in relation to other models and model weights

can be directly estimated over the entire domain with a limited amount of data.

Model calibration and adjustment is a popular field in computer experiments

53



where computer models are adjusted in reference to physical data that has been col-

lected. Most work stems from the seminal paper by Kennedy and O’Hagan [30], in

which a flexible Gaussian process model is used to describe the discrepancy between

the computer model and the physical data. Similar methodologies can be found in

Bayarri et al. [6], Qian and Wu [42], Wang, Chen, and Tsui [48], Chang [13], and

many others. A review can be found in Xiong et al. [54]. Joseph and Melkote [29]

argue that for physical experiments, the “curvature” of the Gaussian model may

be inappropriate for calibrating engineering models to physical data. As a result,

they provide an adjustment to engineering models by using multiple regression. Both

methods assume engineering or computer models are appropriate for the whole design

space. However, it is not always the case that a model is appropriate for the entire

experimental domain. For example, in a chemical vapor deposition (CVD) process,

at high temperatures a process may be described by a diffusion limited model, while

at low temperature the process may be described by a reaction limited model [21]. In

many instances, it is not clear where one model stops and another starts. In another

scenario, a metamodel may be developed based on experimentation from only a sub-

region of the entire current experimental region. After calibration, the metamodel

could be useful on the subregion it was developed for, in addition to regions lying

just outside the subregion, yet it is unlikely to be valid for the whole design space.

When locally calibrating the model, only data in the appropriate subregion and areas

lying just outside the subregion should be included. The direct application of the

calibration procedures above can result in poor model calibration in the above sce-

narios. Alternatively, we provide a very general approach to locally calibrate models

by assigning importance to each data point for the calibration process.
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3.3 Modeling Methodology

The first step in our methodology is to combine all sources of information to build

a unified model to describe the experimental process. In particular, all models–

local, global, detailed, approximate, computer-based metamodels, and physics-based

analytical models–are locally adjusted to the physical data before creating a unified

global model through local averaging. We emphasize a local approach since we do not

require that all models be global models. Instead, a model can describe the process on

a subset of the entire design space. For example, engineers may be able to postulate an

analytical model under restricted experimental settings or previous experimentation

may been conducted on a fraction of the complete current experimental space, yielding

a statistical model that is relevant to only a part of the complete design space. In

these scenarios, it makes sense to adjust a model on its relevant domain–the domain

for which the model was built. After adjustments are made, local averaging is used

to unify all the models.

3.3.1 Local Model Adjustment

Before experimentation on the current system, many times engineers can provide an-

alytic or computer models based on the physical understanding of the process. After

an initial experiment is conducted, the validity of these models can then be evalu-

ated. Departures of the collected data from the proposed model can potentially lead

engineers to update the model in attempt to explain the model mismatch. The goal

of this updating procedure is to create a dialog between statisticians and engineers.

This interaction process could lead to engineers updating models based on informa-

tion that the initial experiment provided instead of relying on a purely statistical

approach to adjusting models. In turn, the updated engineering models have all the

advantages of engineering models, in particular, the power to extrapolate the model to

more accurately guide experimentation with limited data. There is no guarantee that
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the new model will match the process or that an updated engineering model could be

proposed at all. Therefore, after interacting with engineers, a statistical calibration

should be performed if the updated engineering model is still deemed inadequate. As

models may only pertain to subsets of the complete experimental domain, we propose

using a local model adjustment approach.

To better motivate the use of locally calibrating models, consider the following

scenario. A CVD process can be reaction-limited at low temperatures, where the

reaction tends to be very slow. At high temperatures, when chemical reactions tend

to happen quickly, the same process can be diffusion-limited [21]. When it comes

time to calibrate each model, we do not want to bias the calibrations by incorpo-

rating irrelevant data; we don’t want to use data at low temperatures to calibrate

the diffusion-limited model (or vice versa) since the model is not expected to explain

the low temperature phenomenon. We therefore propose to calibrate the models by

implicitly relying on weighted least squares, where higher weights are given to the

relevant data.

The adjustment/calibration weights can be determined with direct interaction

with experts in the field. Take for example the following weighting scheme. For

model j, j = 1, . . . ,m, let Bj =
[
bj1, b

j
2

]
be the hypercube in the experimental domain

where it is known that model j is appropriate, and let Aj =
[
aj1,a

j
2

]
be the hypercube

in the domain where it is known that model j is not suspected to be useful for (Aj)c,

the complement of Aj. Then, the data in region Bj can be weighted equally with

(non-normalized) weights equal to 1, the data in region (Aj)c can be weighted 0, and

the data in region Aj\Bj can be weighted such that the (non-normalized) weights

decrease from 1 to 0 as the distance from the set Bj increases. For example, in the
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one dimensional case, a linear weighting function for model j could look like:

vji (xi) =



bj1−xi
aj1−b

j
1

+ 1, if xi ∈
[
aj1, b

j
1

)
1, if xi ∈

[
bj1, b

j
2

]
bj2−xi
aj2−b

j
2

+ 1, if xi ∈
(
bj2, a

j
2

]
0, otherwise

.

For example, let the complete design space be the unit interval, and consider a model,

denotedMj, that is proposed for the region [3
4
, 1]. Furthermore, suppose it is known

that the model is not appropriate for the region [0, 1
2
]. Then, Bj = [3

4
, 1], (Aj)c =

[0, 1
2
], and Aj\Bj = (1

2
, 3

4
). When adjusting/calibrating modelMj, the available data

would be given (unnormalized) weights as follows: vj(xi) = 1 if xi ∈ [3
4
, 1]; vji (xi) =

3/4−xi
1/2−3/4

+ 1 if xi ∈ [1
2
, 3

4
]; and vji (xi) = 0 if xi ∈ [0, 1

2
].

With the weights specified, models can be locally calibrated. We consider the

constant and functional-adjustment modeling approaches discussed in Joseph and

Melkote [29], but in our local context. As a result, extra care needs to be taken

in estimating the mean and prediction variances. For ease of illustration, we first

discuss the constant-adjustment model where the engineering model is an analytical

model, i.e., only a mean specification of the process. Afterward, we will consider

the functional-adjustment model as well as approximated engineering models such as

metamodels arising from computer simulations.

The constant-adjustment model for model j is given by

Y (x)− fj(x) = β0 + β1(fj(x)− f̄j) + ε,

where ε ∼ N(0, σ2), x is the input value, Y (x) is the observed response at x, fj(x) is

the expected value of engineering model j at x, f̄j is the mean of engineering model

j, and β0 and β1 are unknown adjustment parameters. In the local context, estimates
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of β0 and β1 can be found using weighted least squares, i.e., by minimizing

n∑
i=1

vji (xi)
[
(Y (xi)− fj(xi))− (β0 + β1(fj(xi)− f̄j))

]2
with respect to β0 and β1. Using matrix notation, the weighted sum of squares can

be expressed as

(
(Y − f j)− Fβ

)T
V
(
(Y − f j)− Fβ

)
, (5)

where Y and f j are vectors containing all the Y (x) and fj(x) values, respectively, V

is a diagonal matrix of weights, β is the vector of regression (adjustment) parameters,

and F is the design matrix with a vector of ones in the first column and the vector

f j − f̄ j in the second column, where f̄ j is a vector with all elements equal to f̄j.

A numerical solution to (5) can be found, but the nature of the weight matrix V

leads to complications in statistical inference. Although, (5) is the same optimization

problem as the typical formulation for weighted least squares, the weights have no

relation to the variances of the observations [40]. In particular, V may have zeros

for diagonal elements which can make the matrix XTV X singular. This weighted

least squares approach has been considered by Lindgren, Alberg, andn Domkin [34]

for deterministic model adjustment. The weights in their case corresponded to the

quality of the observed data. However, as discussed in Xiong et al. [54], deterministic

model adjustment cannot account for the randomness in the data. We remedy this

situation by not using weights explicitly, but instead, we conduct inference using

implied weights from using a weighted bootstrapping procedure. As a result, standard

calibration techniques can be applied after weighting each data point based on its

location.

The bootstrap method is a versatile resampling procedure which can be used

to estimate the parameters of a model. The power of using a weighted bootstrap

allows some observations to be downplayed in the analysis [4] and is used here by

assigning low, or even zero, weights to observations that are irrelevant to the model
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that is being calibrated. Existing analysis procedures are applied to the weighted

bootstrap samples, resulting in a simple way to locally calibrate models based on

existing methodologies. Local adjustments for a single analytical model using the

constant adjustment model proceeds as follows:

1. For data point i, i = 1, . . . , N , define sampling weights, vi(x) according to

expert knowledge. Normalize the weights to sum to 1, i.e.
∑N

i=1 ṽi(x) = 1,

where ṽi(x), i = 1, . . . , N , denote the normalized weights.

2. Let n, n ≤ N , be the number of non-zero sampling weights. Draw a sample

with replacement of size n from the discrete distribution (x1, y1) (x2, y2) . . . (xN , yN)

ṽ1(x) ṽ2(x) . . . ṽN(x)

 ,

giving resampled data D∗ = {(x∗1, y∗1), (x∗2, y
∗
2), . . . , (x∗n, y

∗
n)} .

3. Using the resampled data, (x∗i , y
∗
i ), i = 1, . . . , n, estimate the constant-adjust-

ment model parameters using the procedures discussed in Joseph and Melkote

[29] (or any other model calibration procedure). In addition, estimated values

such as the model variance and prediction interval widths can be stored for use

in later inference.

4. Repeat Step 3 M times. For a parameter η, M bootstrap estimates exist,

namely η∗i , i = 1, . . . ,M, one estimate for each bootstrap sample.

5. For parameter η, the weighted bootstrap estimate is just 1/M
∑M

i=1 η
∗
i .

For the process optimization problem considered here, an important quantity is

the 95% prediction interval for an individual response. Let µ̂C denote the mean of the

constant adjustment model, noting that µ̂C(x) = f(x)+ β̂0 + β̂1(f(x)− f̄). When the
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engineering model is an analytical model, the approximate 95% prediction interval

for a new response at design point x is

µ̂C(x)± zα/2σ
{

1 +
1

n
+

(f(x)− f̄)2

S

}1/2

,

where S =
∑n

i=1(fi − f̄)2 (see [29]). To calculate the prediction interval using the

bootstrapped samples, in Step 3 the value of the half-length of the above prediction

interval, in addition to the β estimates, needs to be stored.

If the engineering model is an estimated model, such as a metamodel arising from

a computer experiment, extra care needs to be taken to incorporate the variance

of the estimated model. In this case, the constant-adjustment predictor is given by

µ̂C(x) = f̂(x) + β̂0 + β̂1(f̂(x)− f̄), noting that f is replaced by it approximation f̂ .

Denote the estimated variance of the metamodel at point x by ν(x). As shown in

Joseph and Melkote [29], the approximate 95% prediction interval is given by

µ̂C(x)± zα/2σ
{

1 +
1

n
+

(f(x)− f̄)2 + ν(x)

S
+ (1 + β̂1)2ν(x)

}1/2

.

This interval can be calculated in the same manner as in the analytical model case

by using the weighted bootstrapping procedure.

Example 3.1. To provide a simple illustration of the local model calibration proce-

dure, consider a true response surface defined by the function

f(x) =


1
2

sin(πx), if x ≤ 6;

π
2
(x− 6), if x > 6.

Suppose two engineering models are conjectured, one to describe the process behavior

for lower inputs in the design space and the other for describing the behavior for higher

inputs in the design space. Specifically, suppose the first model (for lower inputs) is

conjectured as f1(x) = (1/2) sin(πx) + .3 and the second model (for higher inputs) is

conjectured as f2(x) = ((π + 1)/2)(x − 6) − 1/2. The plot on the left in Figure 15
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shows the two conjectured models along with simulated data from the true response

function. Engineering model 1 captures the overall shape of the data in the lower input

region, yet overestimates the observed data. Similarly, engineering model 2 seems to

capture the overall shape of the data in the higher input region, yet it is rotated,

resulting in underestimating much of the data. The plot on the right in Figure 15
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Figure 15: Example of local model calibration: (left) engineering models with ob-
served data and (right) locally calibrated engineering models with 95% prediction
intervals are shown.

shows the locally calibrated engineering models. For calibrating engineering model

1, the data inputs which are less than 5.5 are assigned (non-normalized) weights of

1, while data with inputs greater than 6.5 are assigned (non-normalized) weights

of 0. Data with inputs at 5.75 and 6.25 are assigned (non-normalized) weights of

.75 and .25, respectively. For calibrating engineering model 2, data with inputs less

than 5.5 are assigned (non-normalized) weights of 0, while data with inputs greater

than 6 are assigned (non-normalized) weights of 1. Data with inputs at 5.75 are

assigned (non-normalized) weights of .75. Using the proposed weighted bootstrapping

method, the constant adjustment model parameters were estimated along with the

approximate 95% prediction intervals of a new response value. Note that due to

the larger bootstrapped variances, the prediction intervals are wider in regions where
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the estimated response has more curvature. In Example 3.2, we will continue this

example to illustrate the local averaging procedure discussed next. �

If a constant adjustment model is deemed inadequate (see Joseph and Melkote

[29]), then functional-adjustment models can be used to further calibrate the engi-

neering model. The functional-adjustment model is defined as

Y − µC(x) = δ(x;α) + ε,

where ε ∼ N(0, σ2), δ(x;α) is a function to explain the discrepancy between the

data and the constant adjustment model, and α is a vector of unknown parameters

associated with δ. For this work, δ is restricted to the set of linear predictors, namely

δ(x;α) = α0 +

p∑
i=1

αiui(x),

where the ui(x) are known functions of x. The estimated expected value of the

functional adjustment predictor is given by

µ̂F (x) = µ̂C(x) + α̂0 +

p∑
i=1

α̂iui(x),

where the α̂i are the least squares estimates of the αi’s. The 95% prediction interval

is complicated due to the two-stage estimation process, however it can be derived (as

shown in Joseph and Melkote [29]) as

µ̂F (x)± zα/2σ
{

1 +
1

n
+

(f(x)− f̄)2

S
+ u(x)T [(UTU)−1 −A]u(x)

}1/2

,

where A = (UTU)−1UTF (F TF )−1F TU(UTU)−1, U is the design matrix for the

functional adjustment regression model, and u(x)T = (u1(x), . . . , up(x)). As was

done for the constant adjustment model, the weighted bootstrap method can be

directly applied to estimate the functional-adjustment parameters and prediction in-

terval in the local sense.

The weighted bootstrap procedure introduced here for local calibration is a very

general method for locally calibrating models. Its simplicity lies in the fact that the
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resampled data take into account the local weighting, so that any model calibration

methodologies can be applied without any additional, complicated analysis. In some

instances, model selection needs to be incorporated into the calibration process. For

example, in the functional-adjustment model can incorporate any number of regres-

sors, u(x). In such cases, ad-hoc analysis can be done using only the data with

large weights to select which regressors to incorporate. Alternatively, a small number

weighted bootstrap samples can be scrutinized to select the best adjustment model.

In either case, the weighted bootstrap procedure can then be applied to the “best”

model or even a select few models.

3.3.2 Local Model Averaging

The physics of many engineering process are understood to the point where analytical-

engineering models can be proposed to model the mean of the true system behavior.

For example, Joseph and Melkote [29] consider modeling the surface roughness in a

micro-cutting process. Based on the mechanics of the process, multiple engineering

models were proposed to model the process. Similarly, Zhao et al. [58] used a solution

to a set of partial differential equations as the mean model for describing the material

removal rate of a wire saw slicing process. In some cases, analytical models can

be proposed over the whole design space, yet in others, analytical models may only

describe the process behavior on subsets of the complete design space, resulting in

partial models. For example, reaction-limited and diffusion-limited models could be

used to describe the chemical process at low and high temperatures, respectively,

yet for moderate temperatures, potentially both limiting steps occur. Similarly, a

computer experiment may have been previously performed for a computer model

describing the system behavior of a physical process on a subregion of the complete

design space. The resulting metamodel is then restricted to the specific subregion and

cannot be extrapolated to the complete design space. With a local model averaging
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approach, we are able to combine all partial models to build a complete model over

the entire design space.

To take advantage of statistical models and engineering knowledge (via potentially

calibrated analytic or meta- models), we propose a locally averaged model procedure.

In particular, denote the complete design space by D, consisting of points xi with

corresponding response yi. Consider m competing models, given by yj(x) = fj(x)+εj,

j = 1, . . . ,m, where εj ∼ N(0, σ2
j ). The locally averaged model at the point x is

defined as

g(x) =
m∑
j=1

wj(x)fj(x), (6)

where we emphasize that each model weight is dependent upon the location of the

design space. For each fixed x, all the collected data are assigned weights using a

kernel weighting method and the optimal mixture weights in (6) are estimated using

the EM-algorithm. This approach allows the mixture weights to be estimated directly

for any design point in the design space, not just at observed points.

To estimate the model weights at the point x̃, we use local likelihood estimation

procedure as follows. Assign a weight to each data point using a kernel function, i.e.,

assign the importance of the data point for the estimation of the mixture weights.

Specifically, to estimate the mixture weights at x̃, define the kernel weight for point

xi, denoted ki(x̃), according to the formula

ki(x̃) = K

(
xi − x̃
h(x̃)

)
,

where h(x̃) defines a bandwidth resulting in the smoothing window (x̃ − h(x̃), x̃ +

h(x̃)) and K(u) is a kernel function satisfying
∫∞
−∞K(u)du = 1 and K(u) = K(−u)

for all u. Equipped with these kernel weights, we can then estimate the mixture

weights, along with any unknown model parameters, by using the EM algorithm to

maximize the local log likelihood [35]. Denote the complete vector of unknown model

parameters at the point x̃ as θ(x̃) and let Θ(x̃) = {w(x̃),θ(x̃)} , where w(x̃) =
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(w1(x̃), . . . , wm(x̃)). For example, θ(x̃) could include unknown model variances for

an uncalibrated analytic engineering models. Then, for any given point in the design

space x̃, we seek to find

arg max
Θ(x̃)

l(Θ(x̃)) = arg max
Θ(x̃)

n∑
i=1

ki(x̃) log(g(x̃,Θ(x̃)))

= arg max
Θ(x̃)

n∑
i=1

ki(x̃) log(
m∑
j=1

wj(x̃)fj(x̃,θ(x̃)))). (7)

To find the maximum likelihood estimates in equation (7), we propose using the

EM algorithm. Assume there is a set of latent variables, z1, . . . , zm, representing the

model which generated the response value at data point xi. In particular, if yi was

generated from model l, l = 1, . . . ,m, then zi = l. Additionally, let f(l | yi,Θ) denote

P (zi = l | yi,Θ) and fl(yi | Θ)) denote the distribution of the response given by

model l. The EM algorithm then works as follows.

Proposition 3.1. Let there be m competing models, and let zi be a latent variable

representing the model class at design point xi. Additionally, let Θ(t−1) be the current

estimate of Θ (i.e., after iteration t − 1) and let f(l | yi,Θ) = P (zi = l | yi,Θ). For

each fixed point x̃ in the design space, let ki denote the kernel weights for each data

point. Then, the expectation step for optimizing equation (7) is given by

Ez
[
log f(y, z | Θ) | y,Θ(t−1)

]
= C +

m∑
l=1

n∑
i=1

ki log(wl)f(l | yi,Θ(t−1))

+
m∑
l=1

n∑
i=1

ki log(fl(yi | Θ))f(l | yi,Θ(t−1)),

and the maximization step is given by

ŵl =

∑N
i=1 kif(l|yi,Θ(t−1))∑N

j=1 ki

and

θ̂ = arg max
θ∈Θ\w

m∑
l=1

n∑
i=1

ki log(fl(yi | Θ))f(l | yi,Θ(t−1)).
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For notational simplicity, we suppressed the dependence of the parameters on x̃ in

the notation.

Proof. See Appendix. �

Estimating the mixture weights is conditional on the given models as done. For

uncalibrated engineering models, where only the mean is specified without any mea-

sure of variation, a variance estimate needs to be estimated from the data. Formally,

uncalibrated/unadjusted, analytical engineering model f is included by assuming the

model

Y ∼ N(f(x,β), τ 2),

where τ is treated as unknown and needs to be estimated in the optimization in equa-

tion (7).

Example 3.2. To provide a simple illustrations of the local model averaging, consider

the unknown response function

f(x) =


1
2

sin(πx), if x ≤ 6;

π
2
(x− 6), if x > 6.

The local averaging methodology using the tricube kernel, i.e., K(x) = {1− |x|3}3
,

is applied to the calibrated engineering models from Example 3.1. The estimated

model weights are also shown in the left plot of Figure 16. Both models are assumed

to follow a normal distribution with constant error variance. From the plot of the

estimated weights, model 1 is given sole preference at about x ≤ 5.75 and model 2

is given sole preference at about x ≥ 6.5. Between about 5.5 and 6.5, both models

are given non-zero weights, with model 1 being preferred up until about x = 6.25.

The plot on the right in Figure 16 show the expected value of the locally averaged

calibrated engineering models along with the approximate 95% prediction intervals.
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Figure 16: Example of local model averaging: (left) the locally estimated model
weights for the calibrated models in Example 3.1 and (right) the overall locally aver-
aged model are shown.

This locally averaged model pulls from the strengths of each calibrated model to

create a unified model that accurately approximates the true response function. �

3.4 Design Methodology

Experimentation on new, advanced technologies can be very costly and time con-

suming. Even after an experiment is conducted, analyzing the output can be just as

costly and time consuming as the experiment itself. For example, equipment used

to characterize materials can be too expensive to purchase, resulting in the need for

experimenters to pay for rental time to use the equipment. Moreover, analyzing the

experimental output can be time consuming, in turn, limiting the number of outputs

that can be analyzed in a given day. A good design methodology should wisely select

design points to minimize this expense of resources in both the design and analysis

stages while at the same time, ensure that enough information is gained to accurately

address the experimental goals. We consider the case when batch experiments must

be conducted due to cost constraints or physical restrictions.

Based on the principles of the Layers-of-Experiments (LOE) approach in Kim [32],
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the design methodology here achieves these objectives in the following ways. First,

whenever possible, statistically-adjusted engineering models are combined into a uni-

fied engineering-statistics model to drive the experimental designs. Combined en-

gineering and statistical models can make a very efficient use of data by allowing

engineering knowledge to fill in the gaps in potentially sparse data sets. In addition,

a flexible local polynomial regression model is used whenever or wherever engineering

knowledge is lacking. Second, a batch sequential procedure is used. Running experi-

ments in batches can reduce the cost at the analysis stage compared to using a purely

sequential approach, and in some settings, only designing experiments in batches is

the only practical scenario. Using a sequential design allows models to be updated to

more efficiently guide future design plans. Furthermore, we use an adaptive design

region as in the LOE approach of [32], where at each stage of experimentation, the

design region is adapted (contracted or expanded) to contain only regions of experi-

mental interest. For example, if the goal is to produce a product at a certain target

value and within a tolerance level, the design space is adapted to contain only regions

with a “high enough” probability of producing such a product. By eliminating whole

regions that are deemed unsatisfactory, experimental design plans only focus on the

objective at hand without potentially wasting design points.

A powerful modeling approach has been provided in Section 3.3 by exploiting engi-

neering knowledge. Additionally, a local polynomial regression model is used to build

a model over the complete design space which is to be incorporated as a competing

source of information in local model averaging. Local polynomial regression is chosen

due to its flexibility to locally adjust to incoming data. Since the LOE methodology

focuses on adapting the design region, it is necessary to have a model that can be

updated locally. To take advantage of the efforts put into modeling, a model based

experimental design is proposed.

The desired experimental design properties for this work must balance two criteria:
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the search for the optimal point and spread out points to search the design space for

updating models and exploration. Compound design criteria–designs to combine

two or more objectives–have been considered. Typically, approaches include taking

a weighted average of different criteria [28], assigning a fraction of the design runs

by one criteria and the rest by another [38, 23], and combining/constraining design

criteria [2, 17, 27, 32]. Kim [32] and Casciato et al. [9] proposed a new, adaptive

combined criteria to combine D-optimal and space filling criteria by restricting the

distance between any two points when producing D-optimal designs. In the LOE

setting, this design criteria is adapted over time to balance the two criteria, where the

space-filling properties are deemphasized through time. Kim developed this criteria

to address the same goal as those described here, however, the D-optimal criteria

is not developed directly for optimization and can be restrictive (allowing linear or

linear approximations to models). Alternatively, we address combining space-filling

and optimization design criteria in the LOE framework by modifying the SMED

procedure provided in Dasgupta [17] and Joseph, Dasgupta, and Wu [27].

Our goal is not to develop a new batch SMED procedure but instead, to take ad-

vantage of its flexibility and ease of incorporation into the LOE framework. However,

some modifications need to be made to address the LOE principles. The choice to

adapt follow-up design regions needs to be developed, and methodology on the choice

of how to balance the space-filling and optimality criteria needs to be given. To this

end, a review of the SMED algorithm is discussed, followed by its direct extension to

a batch scenario. Following, modifications to the batch SMED (BSMED) procedure

are given to allow its incorporation into the LOE framework. We refer to this new

approach as LOE-BSMED.

69



3.4.1 Sequential Minimum Energy Design

The sequential minimum energy design procedure is a sequential design method de-

veloped by Dasgupta [17] and Joseph, Dasgupta, and Wu [27] in order to find the

global maximum of a function that lies between 0 and 1. For example, Dasgupta

and Joseph, Dasgupta, and Wu considered maximizing the percent yield of nanowires

from an experiment. Similarly, for this work, we will be concerned with maximizing

the probability that a response value lies within some target region. The main idea

behind the procedure is based on a principle in physics – if n charged particles, all

with the same sign of charge, are placed into a box, then the particles will disperse

throughout the box before reaching a final position that minimizes the total potential

energy of the system. By considering the potential design points as charged particles–

each with wisely chosen charges–a new design point is selected to minimize the total

potential energy of the system. Let D denote the design space and X t be the set of

design points in the experiment at time t. Then at time t + 1 the next design point

is chosen as

arg min
xt+1∈D

∑
xi∈X t

q(xt+1)q(xi)

d(xt+1,xi)
,

where d(xt+1,xi) denotes the Euclidean distance between xt+1 and xi.

Below, we provide the main components of the SMED procedure as provided in

Joseph, Dasgupta, and Wu. For more details and discussion on this procedure, refer

to Dasgupta [17] and Joseph, Dasgupta, and Wu [27]. The charge of a design point x

is assigned as q(x) = (1−αp̂(x))γ, where α is a parameter estimated from the current

data, γ is tuning parameter set by the experimenter, and p̂(x) is the current estimated

value of the response/objective function (between 0 and 1) at x. The parameter α is

sequentially estimated as 1/p
(n)
g , where p

(n)
g is the estimate of the global optimum after

n points, xi, . . . ,xn, have been selected. The value p
(n)
g is estimated as follows. Let

p(n) = max1≤i≤n p(xi), i.e., the maximum observed response, and let n0 be the total
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number of design points until termination of the algorithm. Then p
(n)
g is estimated

by fitting the model

p(i) = p(n)
g

exp(β
(n)
0 + β

(n)
1 i)

1 + exp(β
(n)
0 + β

(n)
1 i)

, i = 1, . . . , n.

In addition to the n observed points, two more points are used to fit the above

model. These points are (0,
p(1)

2
) and (n0, p̃(n)), where p̃(n) =

np(n)+1

n+1
. Estimation for

the above logistic model is done by minimizing the sum of squared residuals subject

to p
(n)
g ≥ (p(n) + p̃(n))/2.

3.4.2 Layers-of-Experiments Batch Sequential Minimum Energy Design

Modifications to the SMED procedure are developed in this section to incorporate the

batch sequential experimental design in the Layers-of-Experiments setting. Consider

selecting a batch of size b at the new design stage. After the selection of n points,

the minimum energy design criteria is to find the b points (xn+1, . . . ,xn+b) ∈ D to

minimize

En =
n+b−1∑
i=1

n+b∑
j=i+1

q(xj)q(xi)

d(xi,xj)
. (8)

This batch metric was briefly mentioned in Joseph, Dasgupta, and Wu without details

or illustration. Where needed, we provide details and discussion on this batch sequen-

tial minimum energy design (BSMED) provided in Joseph, Dasgupta, Wu [27], and in

addition, we provide insight on how aspects of the LOE formulation can be beneficial

to the BSMED procedure, even when the full LOE methodology isn’t applied.

3.4.2.1 The Choice of q(xi)

Assigning the energies is an important role. For this paper, the energies are assigned

as in Dasgupta [17] and Joseph, Dasgupta, and Wu [27], i.e., q(xi) = (1 − αp̂(xi))γ,

where p̂(xi) is the estimated objective function (restricted to functions between 0

and 1) at xi. For example, in Dasgupta and Joseph, Dasgupta, and Wu, p(x) was
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the response surface when considering optimizing the percent yield. In this work,

where we consider producing a product at a nominal level, p(x) is the probability

that a product is produced within some tolerance band of the target value. In our

setting, where competing sources of information are provided, the objective function

will be estimated by using the locally averaged model. An alternative assignment of

energies that enables the incorporation of engineering trust has also been proposed

for collaborative scenarios in which engineering expertise can be incorporated in the

design beyond the use of mean and variance models. See Vastola et al. [46] for more

details.

For clarification, estimating the global maximum of the objective function, p
(nb)
g ,

and hence α, has to be addressed in the batch scenario. Let nb denote the current

number of batches that have been collected (including the initial design), and let n

denote the total number of points currently in the design (also including the initial

design). Let p(nb) = max1≤i≤n p(xi), i.e., the maximum observed response, and let

nb0 be the total number of batches of design points (including the initial experiment)

that are going to be taken until terminating the algorithm. Then p
(nb)
g is estimated

by fitting the model

p(i) = p(nb)
g

exp(β
(nb)
0 + β

(nb)
1 i)

1 + exp(β
(nb)
0 + β

(nb)
1 i)

, i = 1, . . . , nb.

In addition to the nb observed maximum points, two more points are used to fit

the above model. These points are (0,
p(1)

2
) and (nb0, p̃(nb)), where p̃(nb) =

nbp
(nb)

+1

nb+1
.

Estimation for the above logistic model is done by minimizing the sum of squared

residuals subject to p
(nb)
g ≥ (p(nb) + p̃(nb))/2. Differing from the SMED procedure, we

propose taking p(i) to be the maximum of the predicted objective function after the i-

th batch experiment over the entire experimental domain instead of just the maximum

at the observed points, i.e., p(i) = maxxi∈D p̂(xi), i = 1, . . . , nb. Defining p(i) in this

manner guarantees the energies are between 0 and 1 which is not guaranteed when

choosing p(i) just based off of the observed values.
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3.4.2.2 The Choice of γ

The choice of γ plays an important role in the design. Vastola et al. [46] discussed

the effects of the parameter γ in designing an initial experimental design, and Das-

gupta [17] and Joseph, Dasgupta, and Wu discussed it in a purely sequential setting.

There is a clear trade-off: lower values of γ lead to designs emphasizing space filling

properties, while higher values of γ lead to designs that aim to satisfy the optimality

criteria. Instead of holding γ fixed, sequentially updating it can exploit this trade

off. For the purely sequential case, Dasgupta [17] considers γ = 1, 2, or 3 and Joseph,

Dasgupta, and Wu [27] recommended setting γ to 1, yet we show in Section 3.5 that

in a batch setting, these values are too low, giving poor results.

When collaborating with scientists and engineers, expert knowledge may be used

to set the value of γ. Potential designs with differing values of γ can be viewed before

any experiments are conducted in the next batch. Experimenters can review each

design and decide which γ best suites their needs. For example, an expert could

believe that the model prediction is not mature enough at the current stage or the

results may go against engineering intuition. In such cases, a lower value of γ could

be chosen in order to encourage exploring the design space as opposed to searching for

the global optimum. In some cases, choosing a large γ can result in designs that place

points so close together, that for all practical purposes, it is infeasible to distinguish

the points apart. For example, if a systems temperature control unit has an error

of ±5 degrees centigrade, then it is not reasonable to consider conducting physical

experiments that are only a couple of degrees centigrade apart.

Another way to set γ is to use an automated procedure, but first, an idea of

the magnitude of γ needs to be developed. Dasgupta [17] and Joseph, Dasgupta,

and Wu [27] related the convergence of the SMED algorithm to the energies in the

following manner: the sequential design converges if q(xi) < δ, where δ is a small

positive number. Using this concept, the minimum value of γ necessary to force
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convergence of the algorithm (at least in the purely sequential setting) is the value

γmax that forces the minimum energy to be less than δ, i.e.,

γmax =
log(δ)

log(1− αmaxxi p(xi))
.

Here, γmax is calculated only after the initial experiment. Setting γ = γmax forces

convergence instead of exploration, when in early designs, exploration should be em-

phasized. Therefore, γ can be set to only a fraction of γmax, namely, γ = κγmax,

where 0 ≤ κ ≤ 1. Setting κ will be discussed later, but the general idea is to increase

κ as the design objective is closer to being satisfied.

3.4.2.3 Adaptive Region Choice

The concept of adapting design regions has been explored in methodology such as

response surface methodology [8], the Grid Algorithm [49, 50], Layers-of-Experiments

[32], SELC [39], G-SELC [38], and others. Typically, these methods take one of two

approaches: (i) shrink the design region to target only promising regions, or (ii)

eliminate design regions that are unpromising. Each approach has its benefits. The

former approach has the potential to quickly find the optimal operating condition,

while the latter approach, although slower to converge, cautiously removes design

spaces as to not miss the optimal region. However, zoom-in approaches run the risk

of prematurely zooming into the wrong design region, especially when dealing with

complicated functions, while the latter approach can require too many experimental

runs rendering it inadequate for high-cost, low-resource experiments. To reap the

benefits of each methodology, the procedures are combined.

Early stages in sequential design should be used for exploring the design space and

validating models before spending resources on targeting the objective. Therefore,

in earlier stages, uninteresting regions of the design space will be removed, while in

later stages, the design region will zoom in on optimal regions. We call a sequential

design a purely elimination design if after each iteration, the follow-up design region
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corresponding to the lower 5% of the objective function is removed. Alternatively,

we consider a follow-up design a purely zoom-in design if at each iteration, the design

region is shrunk to the region corresponding to the upper 5% of the objective function.

Denote the threshold for the purely elimination design at the k-th iteration by ξ
(k)
.05

and the threshold for the purely zoom-in design at the k-th iteration by ξ
(k)
.95 . In

particular, ξ
(k)
.05 the 5% quantile of the estimated objective function (at step k) and

ξ
(k)
.95 the 95% quantile of the estimated objective function (at step k). A new threshold

is proposed as τ (k) = (1 − κ)ξ
(k)
.05 + κξ

(k)
.95 , where κ is the same as the coefficient for

γmax.

The proposed threshold is used to determine the next design region for follow-

up experimentation. For example, suppose an experiment is to be conducted in

three batches. In the initial experiment, the design points are chosen from the entire

design region. Using the data collected from the initial experiment, the objective

function is estimated and ξ
(1)
.05 and are ξ

(1)
.95 calculated. The threshold is then defined

as τ (1) = (1−κ)ξ
(1)
.05 +κξ

(1)
.95 . Setting κ is discussed later. All design points with corre-

sponding estimated objective function less than τ (1) are removed from consideration

for the follow-up design. In particular, the design region for the second round of

experimentation is defined as all the

All quantiles are calculated over the entire experimental region, not just in the

follow-up design regions, allowing for subsequent regions to be larger or smaller than

previous regions. The goal is to define κ so that it increases over time, resulting in the

more cautious elimination approach in earlier stages and a more aggressive zoom-in

approach in later stages.

As a side note, we discuss here the potential benefit of adapting the design region

on the BSMED procedure, even when other aspects of the LOE approach are not con-

sidered. Notice that the metric in equation (8) is a function of the distance between

the points. Potential design points have a natural repelling force that pushes them
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away from each other unless the effect of the charges overshadows the repulsion. This

fact is not an issue when using a non-batch sequential design where the model and

design parameters are updated before selecting a subsequent point. In the batch set-

ting, however, simply choosing b design points can result in the points spreading away

from each other; points can be placed in regions that are highly unlikely to be optimal

based solely on the distance between them. By first restricting the design space, the

negative effects of repulsion are counteracted. Consider the following simple example.

Example 3.3. Let f(x1, x2) = 30− (8x1 − 4)2 − (8x2 − 4)2, where (x1, x2) ∈ [0, 1]2,

and consider the random function defined by y = f(x1, x2) + ε, where ε ∼ N(0, 1).

Suppose the goal of experimentation is to find the operating condition that maximizes

the probability that a product is produced at a target mean of T = 30 and within

a tolerance of d = 1. The optimal operating condition in this example occurs when

(x1, x2) = (1/2, 1/2). At this point, the probability that the product meets our

tolerance requirements is 0.6826. We compare two design methods. In the method 1,

we apply the BSMED procedure. In method 2, we apply the BSMED procedure while

at the same time adapting the design region. For this example, we consider a simple

procedure to adapt the design region to illustrate the point. All design points whose

predicted response is not within ±1.96 standard prediction errors of T are eliminated

before the next batch is drawn. Here, γ is set to 1, local polynomial regression is

used to estimate the response surface, α is updated in the same manner as in Joseph,

Dasgupta, and Wu [27], and an initial experiment (using a space-filling design of size

8, with 3 repetitions) is conducted to obtain a stable approximation of the initial

loess regression model. Two follow-up experiments are then conducted by selecting

batch sizes of b = 3 with three repetitions taken at each design point. An exchange

algorithm [19] (discussed in Section 3.4.2.5) is used to find the optimal designs.

Table 5 shows the results of 100 simulations. Considering only the six selected batch
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Table 5: Example 3.3 Results (Average Over 100 Simulations)

Max Probability Mean Probability # No Yield Pts.
Non-Adaptive Region 0.48 0.18 4.21

Adaptive Region 0.64 0.50 0.53

points (collected in two batches), the values reported in Table 5 are: (i) the maximum

probability for the true response; (ii) the average probability for the true response;

and (iii) the number batch points placed in zero probability regions. Each of these

three values is averaged over 100 simulations. �

The overall goal of the experiments being considered is to find the optimal op-

erating condition to meet the engineering tolerance. In Example 3.3, adapting the

design region results in placing at least one point closer to the optimal operating

condition on average. Moreover, the average probability of meeting the engineering

tolerance for all the batch points is also higher when the design space is adapted.

Lastly, the number of batch points placed in no yield regions is lower. The latter

two results are especially important when engineering models are being considered

to guide model-based experimentation. The models are being validated, adjusted,

and/or updated after each round of experimentation. In a limited resource setting,

the number of design points required to, for example, adjust an engineering model

are likely be few and far between. Therefore, it is important to design experiments

that place points in locations that are more likely to contain the optimal operating

condition. Engineering models are then at least able to be validated and adjusted in

regions that are important to achieve the overall goal.

3.4.2.4 The Choice of κ

The role of κ is two fold: it dictates the aggressiveness in setting γ and in choosing

the subsequent design region. On the two extremes, setting κ = 0 results in a purely

77



space-filling, elimination sequential design, while setting κ = 1 results in a purely

objective oriented, zoom-in sequential design. The goal is to set κ closer to 0 in early

stages to encourage exploration of the design space and to set κ closer to 1 in later

design stages to encourage targeting the objective.

There are many ways to choose κ. First, consider a collaborative setting where

experts can view the effects of different κ values and choose the experimental design

that best suites their needs. A larger value of κ may result in values of γ that are

too aggressive, as discussed above, and subsequent design regions that eliminate too

many design points from consideration. Alternatively, smaller values of κ can yield

designs that are too passive in the search for the global optimum.

Automated approaches can instead be taken to choose the value of κ. Given

the maximum allowable resources, i.e., the maximum number of batch experiments

that can be run, κ can be set using a step function. Let nb be the number of batch

experiments, including the initial experiment, that are to be run. For the i-th batch

experiment, set κ = (i−1)/nb for i = 2, . . . , nb. For a discussion on setting κ based on

the information gained from experimentation, see Kim [32], who considers a similar

sequential design scenario.

3.4.2.5 Exchange Algorithm

An exchange algorithm [19] is used to find the design the minimizes the total energy.

Given n points in the design, the total potential energy after adding b points is

En+b =
n+b−1∑
i=1

n+b∑
j=i+1

q̂(xi)q̂(xj))

d(xi,xj)
.

Notice that En+b can be decomposed into a fixed component containing the n existing

design points and a variable component containing the additional energy introduced

by adding b design points. The total energy becomes:

En+b =
n−1∑
i=1

n∑
j=i+1

q̂(xi)q̂(xj))

d(xi,xj)
+

b∑
i=n+1

n∑
j=1

q̂(xi)q̂(xj))

d(xi,xj)
+

b−1∑
i=n+1

b∑
j=i+1

q̂(xi)q̂(xj))

d(xi,xj)
.
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Since the first component is irreducible, the goal is to find the b points that minimize

E
(n)
b ≡

b∑
i=n+1

n∑
j=1

q̂(xi)q̂(xj))

d(xi,xj)
+

b−1∑
i=n+1

b∑
j=i+1

q̂(xi)q̂(xj))

d(xi,xj)
.

The algorithm works as follows:

1. Denote the current design region excluding the fixed n design points by D(n).

Randomly select b points from D(n), denoting these points by the vector b =

(d1, d2, . . . , db);

2. Calculate the current energy E
(n)
b , and denote this value by Ec. Set i = 1;

3. For each point xj in the design space D(n)\b, replace di with xj and calculate

E
(n)
b,j , the value of E

(n)
b when di is replaced by xj. Let E

(n)∗
b = minj E

(n)
b,j and x∗

be the corresponding design point to E
(n)∗
b . If E

(n)∗
b < Ec, set di equal to x∗i .

Update b to reflect this change. Set i = i+ 1;

4. Repeat steps 2 and 3 until i = b+ 1, at which point, go to step 5;

5. Repeat steps 2 through 4 until no more exchanges are made or the maximum

allowable iterations is achieved.

Step 3 can efficiently be calculated by noting that when replacing di with candidate

point xj, E
(n)
b,j can be decomposed as

E
(n)
b,j = E

(n)
b −

n∑
k=1

q̂(di)q̂(xk))

d(di,xk)
−

b∑
k=n+1,k 6=i

q̂(di)q̂(dk))

d(di, dk)

+
n∑
k=1

q̂(xj)q̂(xk))

d(xj,xk)
+

b∑
k=n+1,k 6=j

q̂(xj)q̂(dk))

d(xj, dk)
.

Therefore, the total potential energy of the proposed design doesn’t have to be com-

pletely re-calculated at each step, but instead, can just be updated by removing the

energies corresponding to di and adding the energies corresponding to xj. Due to the

randomness in the initial design in step 1, it is recommended to run the exchange

algorithm many times and choose the best design resulting from the multiple runs.
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3.5 Combined Methodology: Layers-of-Experiments

Combining the modeling methodology presented in Section 3.3 with the experimental

design methodology presented in Section 3.4 provides a powerful methodology for

process optimization since both the modeling techniques and design methodology

in and of themselves are effective techniques. Figure 17 gives a schematic of the

combined methodology.

build ini-
tial model

collect
expert
knowl-

edge/prior
models

design and
run initial
experiment

locally cali-
brate individ-

ual models

expert
adjust-
ment to

individual
models

build unified
model through
local averages

is stopping
criteria met?

stop

decide next
design region

choose follow-
up experi-

mental design

run follow-up
experiment

yes

no

Figure 17: A schematic of design and modeling process is shown here.

The entire process optimization process begins with an initial experiment that

combines all prior knowledge, e.g., engineering models, expert opinion, or past ex-

perimental results on similar, yet non-identical systems. Vastola et al. [46] provide
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a flexible and effective procedure for combining this information to plan an initial

experiments. If no prior knowledge exists, a standard space-filling design can be used

for the initial experiment. The data collected in the initial experiment are used to

calibrate existing engineering models based on the methodology in Section 2. In ad-

dition, the models can be adjusted by experts based on the knowledge learned from

the initial experiments. For example, additional model terms can be added to ac-

count for physical processes that were unaccounted for in the original engineering

models. The updated and adjusted engineering models are locally averaged into a

unified model. In addition to engineering models, statistical models can be incorpo-

rated into the locally averaged model. The statistical models we consider are local

polynomial regression models. These models have the advantage to adapt locally,

which goes hand-in-hand with our methodology. Since the design region adapts to

include only sub-regions of interest, from which subsequent design points are chosen,

local polynomial regression provides a flexible procedure for adjusting the statistical

model locally. If no engineering models are present, only purely data-driven models

can be used.

The unified, locally averaged model is first used to select the follow-up design re-

gion and tuning parameter γ, as discussed in subsections 3.2.3 through 3.2.5. Follow-

ing, the unified model is used to estimate the objective function, namely p(x), which

in turn, is used to assign the energies in our Layers-of-Experiments, batch sequential

minimum energy design (LOE-BSMED) methodology. The follow-up LOE-BSMED

experiment is run and the second model updating and adjustment process begins

again. The whole procedure is iterated as in Figure 17 until a stopping criteria is

met. Stopping criteria include using the maximum allowance of design points and/or

until satisfactory model accuracy is obtained.
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3.6 Applications

We consider two applications to illustrate our methodology. First, we consider the

CdSe nanowire example studied by Dasgupta [17] and Joseph, Dasgupta, and Wu [27],

where the goal is global optimization of the nanowire yield. This application provides

a study of the LOE-BSMED design strategy without using the modeling methodology

discussed in Section 2. Second, a simulation study on a modified six-hump camel

back function is provided to illustrate our complete methodology, incorporating the

complete LOE-BSMED methodology (with prior engineering models), to maximize

the probability of producing a product within a tolerance limit around a target value.

3.6.1 Nanosynthesis Morphology

Dasgupta et al. [18] reported an experiment studying the effects of temperature and

pressure on the yield of CdSe nanowires. Dasgupta [17] and Joseph, Dasgupta, and

Wu [27] developed the SMED optimization algorithm for and studied its performance

on this nanowire fabrication process. Figure 18 shows a plot of response function.

The experiment consisted of 45 points, 5 temperatures and 9 pressures, transformed

to the unit interval, and the response value is the percentage yield of nanowires. The

maximum yield occurred at the point (0.32, 0.25).

In the simulation studies that follow, we compare the BSMED (batch-SMED) and

LOE-BSMED design procedures. We mimic the setup as in Joseph, Dasgupta, and

Wu, except the experimental points are taken in batches as discussed in Sections 3.4.1

and 3.4.2. Since no prior engineering models exist, the response surface is estimated

using only local polynomial regression with spanning parameter λ = 1 (as it gave

the best results). The simulated responses are drawn from a binomial distribution

with size r and success probability equal to the observed yield in the actual physical

experiment (see Dasgupta [17]). We consider sequential designs with a total number

of 20 experimental runs. The 20 experimental runs are allocated in three scenarios:
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initial designs of size 5, 8, and 11, with sequential samples taken in sizes of 5, 4, and

3, respectively. The performance of the algorithms are based on three measures: the

average number of times that the true optimal value is sampled (over all 20 design

points), the average yield over the sampled points (excluding the initial sample), and

the average number of points placed in no yield regions (excluding the initial sample).

The results are shown in Tables 6-8. For both procedures, the initial designs are space

filling designs. For the BSMED procedure, different values of γ are considered. For the

LOE-BSMED procedure, κ = i/3, i = 1, 2, 3 for the 3 layers of follow up experiments,

and different values of δ are considered.

The study shows that setting γ too low (equal to 1 as used for the SMED case)

gives poor results. This is likely due to the repelling effect inherent in minimum

energy designs. For the higher values of γ the results are better, yet the LOE-

BSMED procedure performs better by all three measures. The superiority of the

LOE-BSMED procedure is more readily seen when the number of points chosen in

the follow-up experiments is larger. In other words, LOE-BSMED has a more clear

advantage when the initial experiment consists of 5 points. In addition, LOE-BSMED

has a very practical advantage. Choosing the value of δ is much more intuitive to

choosing what value of γ to use. Moreover, the appropriate value of γ likely changes

based on the unknown response function, yet δ is a more universal measure that can

interpreted in the same way no matter the problem.

3.6.2 Application on Optimization Function

We illustrate the complete methodology using a modified six-hump camel back func-

tion known in optimization literature. The six-hump camel back function is given

by

g(x1, x2) = (4− 2.1x2
1 +

x4
1

3
)x2

1 + x1x2 + (−4 + 4x2
2)x2

2.
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Table 6: Simulation Results (Average Over 2000 Simulations)–11 run initial design;
3 batches of 3 runs each; 20 runs total.

Repetitions Method Parameter Max Mean # No Yield
Values Probability Probability Points

r=5 BSMED γ = 1 .581 .231 1.800
γ = 5 .689 .248 1.595
γ = 10 .682 .250 1.546

LOE-BSMED δ = .01 .706 .259 1.344
δ = .0001 .721 .262 1.293
δ = .000001 .697 .261 1.281

r=10 BSMED γ = 1 .591 .232 1.999
γ = 5 .706 .253 1.580
γ = 10 .694 .253 1.138

LOE-BSMED δ = .01 .745 .269 1.184
δ = .0001 .758 .271 1.151
δ = .000001 .745 .271 1.112

r=25 BSMED γ = 1 .586 .234 2.028
γ = 5 .704 .255 1.623
γ = 10 .702 .253 1.598

LOE-BSMED δ = .01 .757 .275 1.126
δ = .0001 .771 .277 1.051
δ = .000001 .772 .275 1.083

r=100 BSMED γ = 1 .597 .236 2.018
γ = 5 .691 .252 1.732
γ = 10 .675 .252 1.690

LOE-BSMED δ = .01 .773 .280 1.079
δ = .0001 .776 .278 1.087
δ = .000001 .762 .278 1.099
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Table 7: Simulation Results (Average Over 2000 Simulations)–8 run initial design;
3 batches of 4 runs each; 20 runs total.

Repetitions Method Parameter Max Mean # No Yield
Values Probability Probability Points

r=5 BSMED γ = 1 .578 .221 2.71
γ = 5 .730 .253 1.764
γ = 10 .740 .255 1.709

LOE-BSMED δ = .01 .724 .240 2.106
δ = .0001 .745 .251 1.794
δ = .000001 .748 .253 1.765

r=10 BSMED γ = 1 .604 .232 1.999
γ = 5 .790 .262 1.564
γ = 10 .779 .262 1.504

LOE-BSMED δ = .01 .784 .256 1.678
δ = .0001 .826 .264 1.480
δ = .000001 .804 .263 1.481

r=25 BSMED γ = 1 .643 .229 2.490
γ = 5 .822 .267 1.403
γ = 10 .820 .267 1.381

LOE-BSMED δ = .01 .845 .267 1.404
δ = .0001 .863 .272 1.257
δ = .000001 .865 .273 1.216

r=100 BSMED γ = 1 .618 .231 2.451
γ = 5 .853 .271 1.370
γ = 10 .855 .273 1.273

LOE-BSMED δ = .01 .879 .271 1.314
δ = .0001 .887 .277 1.139
δ = .000001 .886 .276 1.159

85



Table 8: Simulation Results (Average Over 2000 Simulations)–5 run initial design;
3 batches of 5 runs each; 20 runs total.

Repetitions Method Parameter Max Mean # No Yield
Values Probability Probability Points

r=5 BSMED γ = 1 .533 .197 4.069
γ = 5 .704 .226 2.900
γ = 10 .693 .227 2.87

LOE-BSMED δ = .01 .704 .228 2.791
δ = .0001 .750 .235 2.568
δ = .000001 .766 .236 2.484

r=10 BSMED γ = 1 .533 .200 3.990
γ = 5 .736 .231 2.716
γ = 10 .759 .235 2.639

LOE-BSMED δ = .01 .787 .242 2.281
δ = .0001 .809 .244 2.208
δ = .000001 .833 .247 2.129

r=25 BSMED γ = 1 .558 .206 3.752
γ = 5 .804 .238 2.524
γ = 10 .822 .240 2.491

LOE-BSMED δ = .01 .869 .251 2.011
δ = .0001 .870 .250 2.000
δ = .000001 .874 .251 1.947

r=100 BSMED γ = 1 .568 .209 3.63
γ = 5 .850 .239 2.468
γ = 10 .830 .240 2.393

LOE-BSMED δ = .01 .877 .255 1.892
δ = .0001 .879 .253 1.921
δ = .000001 .884 .253 1.847
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Figure 18: This figure shows contour plot of the CdSe nanowire yield originally
studied in Dasgupta [17].

The function g(x1, x2) is modified to give a unique global maximum, as opposed to

two global minimum, by transforming g(x1, x2) to

g∗(x1, x2) = 15− (4− 2.1x2
1 +

x4
1

3
)x2

1 + x1x2 + (−4 + 4x2
2)x2

2 + .5x2.

Furthermore, the function is rescaled to the unit grid for analysis by substituting

x∗1 = 4x1− 2 and x∗2 = 2x2− 1 in for x1 and x2, respectively. The contour of g(x1, x2)

is shown in Figure 22.

For illustration, suppose an experimenter is to conduct experiments on a system

with true response surface given by g∗(x∗1, x
∗
2) with an associated system standard

deviation of σ = .5. The end goal of the experimenter is to find the optimal system

input to create a product at a target value of T = 16.5 units with a tolerance of ±1

unit, i.e., the goal is to find the input (x1, x2) that maximizes the probability that

the product will have a size between 15.5 and 17.5 units. The true optimal input

of the system is (x∗1, x
∗
2) = (.48, .87), and the associated probability of producing the

product within the tolerance limits is 0.9545.
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Prior to experimentation, expert engineering knowledge provided the following

analytical engineering model for the upper-left quadrant of the design region:

feng(x
∗
1, x
∗
2) = g∗(x∗1, x

∗
2)− x∗2 + 4(x∗1)6.

In addition, for the upper-right quadrant of the design space, a 16 run full factorial

design was used to study a computer model given by

fcomp(x
∗
1, x
∗
2) = g∗(x∗1, x

∗
2)− 5.

As a result, a universal kriging model is used to analyze the computer experiment.

Denote this metamodel by fmeta. Note that although the computer model only needs

a minor adjustment by adding a constant, the kriging model, fmeta was built only

for the upper-right quadrant. Outside this quadrant, fmeta is far from accurate, even

after adjustment. Lastly, in the lower two quadrants, no prior knowledge is available.

Thus, a purely data driven statistical model will be relied upon for these quadrants.

Figure 19 summarizes the knowledge before experimentation.

Prior Models by Region

X1

X
2

Analytic Engineering Model Computer Metamodel

No Prior Model

Figure 19: The partition of prior knowledge on the complete design space is shown.

A 12 point space-filling design is used as the initial experimental design, and two

batches of follow-up experiments are conducted, each with 4 points. The designs

are selected from a design space that has been gridded into 0.05× 0.05 size squares.
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The final design is shown in Figure 23. At each design point, three repetitions were

simulated from g∗(x∗1, x
∗
2) + ε, where ε ∼ N(0, σ2). After each batch of experimen-

tation (including the initial experiment), feng and fmeta are locally calibrated using

functional and constant adjustment models, respectively.

To locally adjust feng, expert opinion is used to assign weights to the observed

data. The intended use of feng was for the upper-left quadrant, so the observed data

in the upper-left quadrant were given (unnormalized) weights of 1; data with inputs

within a distance .05 of the upper-left quadrant were assigned a weight of .75; data

with inputs within a distance of (.05, .1) of the upper-left quadrant were assigned

a (unnormalized) weight of .5; and all other data points were assigned a weight of

0. Since only data in or near the upper-left quadrant were used for calibration, only

the x∗2 term was detected for calibration. The term 4(x∗1)6 doesn’t significantly affect

feng in and near the upper-left quadrant, so it was not detected for local calibration.

As a result the locally calibrated version of feng, denoted by fFeng is only accurate for

x∗1 ≤ 0.5.

To locally adjust fmeta, expert opinion is used to assign weights to the observed

data. The intended use of fmeta was for the upper-right quadrant, so the observed data

in the upper-right quadrant are given (unnormalized) weights of 1; data with inputs

within a distance .05 of the upper-right quadrant are assigned a (unnormalized) weight

of .75; data with inputs within a distance of (.05, .1) of the upper-right quadrant were

assigned a (unnormalized) weight of .5; and all other data points were assigned a

weight of 0. The constant adjustment model was sufficient for detecting the constant

difference between g∗ and fmeta, so the calibrated version of fmeta, denoted by fCmeta,

accurately represents the overall trend in the upper-right quadrant. Outside of this

quadrant, however, it remains inaccurate.

The response in the complete design space (all four quadrants) is modeled using

local polynomial regression. Denote this model by floess. The model floess fills in
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the inadequacies of the prior conjectured models, even after their local calibration.

With all three models in hand, the local model weights (local posterior probabilities),

denoted by w’s, are calculated as in Section 3.3.2, and a unified model is given by

f̂(x) = weng(x)fFeng(x) + wmeta(x)fCmeta(x) + wloess(x)floess(x).

Figure 20 shows each models’s weight in the entire design space after the initial

experiment. In the two left quadrants, fFeng is given the majority of the weight; in the

upper-right quadrant, fCmeta is given the majority of the weight; and for the two right

quadrants, floess is given a significant weight, especially in the lower-right quadrant.

It is seen that floess “fills in” the gaps left by engineering knowledge.
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Figure 20: Contours of the estimated local mixture model weights after the initial
experiment are shown.

The unified model, f̂(x), is used to estimate the the objective function, namely,

p(x) = P (T − d ≤ f̂(x) ≤ T + d), in turn deciding: the assignment of energies, the

choice of γ, and the follow-up design region. For this example, δ = 0.01 and κ is

set (in accordance with the first automated procedure) as 0.5 and 1 for the first and

second follow up designs, respectively. The design regions for the two follow-up batch

experiments are shown in Figure 21 along with the estimated objective functions. For

the first follow-up design, the region is non-convex and larger than the region for the

final follow-up design, which is focused around the region containing the maximum

of the objective function.
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Figure 21: Adaptive design regions and estimated contours of the objective func-
tion for the first and second follow-up experiments are shown on the left and right,
respectively.

The complete modeling and design processes iterate as in Figure 17 until the

maximum allowable runs are used up–for this case, 20 runs. Figure 22 shows the true

contour of g∗(x∗1, x
∗
2) next to its estimated contour based on the experimental runs.

To save resources, our design plan focuses on only placing design points in regions

that potentially contain the optimal value. As a result, the estimated contour is very

accurate near the optimal region (around the upper-left quadrant) and only a rough

approximation elsewhere. The results of the design process did not suffer from this

fact; the estimated optimal input is (x∗1, x
∗
2) = (.45, .9) with an estimated probability

of success of 0.9997. Recall, the true optimal input is (x∗1, x
∗
2) = (.48, .87), and the

associated success probability is 0.9545. The complete design is shown in Figure 23.

3.7 Conclusion

In this work, we provided a complete methodology for finding the optimal operating

condition for high cost, low resource experiments motivated by the LOE approach in

Kim [32]. Two novel approaches in local modeling are provided: a very general local

calibration/adjustment approach and a local model averaging approach. Equipped
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Figure 22: Contours of the true (left) and estimated surfaces (right) are shown.
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Figure 23: The final experimental design is shown overlaying the true contour.

with a powerful modeling approach, a model-based batch sequential design procedure,

referred to as LOE-BSMED, is introduced to balance space-filling properties with the

search for the optimal operating condition while adapting the design region. Perfor-

mance of the LOE-BSMED procedure is studied on a CdSe nanowire growth dataset

provided in Dasgupta [17] and a modified six-camel hump optimization function.

We presented new advancements in statistical modeling and experimental design

in conjunction to address experimental designs for highly complicated physical sys-

tems. It is worth noting that each of these methodologies can stand-alone or in pairs
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to address modeling and/or experimental design problems. For example, the design

methodology showed good performance without the use of engineering knowledge.

In addition, conditional on competing models, the local model averaging method-

ology can be applied to draw from the strengths of each model for better process

characterization or prediction. Similarly, engineering models can be calibrated and

adjusted based on the “quality”–in this case, location–of the data. The local calibra-

tion/adjustment procedure is very general and non-restrictive, as it is likely to have

the ability to be incorporated in many existing and future calibration procedures.

3.8 Future Work

Future work on the topic of Layers-of-Experiments (LOE) could be the development

of a unified Bayesian framework. As multiple sources of information are combined

and models are calibrated, adjusted, and updated over time, a Bayesian framework

seems like a natural extension. For example, information from previous rounds of

experimentation can be used to set prior distributions for the current round of ex-

perimentation. Additionally, Bayesian methods are typically flexible in dealing with

sequentially observed data. We discuss some relevant literature and their potential

uses and extensions for building a Bayesian LOE framework. In particular, discussions

on modeling, design criteria, and subsequent design region choice are provided.

Many advances in modeling data come from multiple sources have focused on

using a Bayesian methodology. For instance, in the seminal work of Kennedy and

O’Hagan [30], a hierarchical Bayesian framework was proposed for calibrating and

adjusting engineering/computer models to physical data. Denoting zi as the observed

data, η(xi,θ) as the engineering/computer model, and δ(xi) as the model inadequacy

function, they propose the following calibration model:

zi = ρη(xi,θ) + δ(xi) + ei,

where ρ is an unknown regression parameter and ei is the observation error for the
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i-th observation. Both η(xi,θ) and δ(xi) are assumed to be independent Gaussian

processes (GP). The model parameters are estimated through a hierarchical Bayesian

framework. The flexibility in the GP model could be useful for the local approaches

used here, as it should be able to, in some sense, update locally. Many other Bayesian

calibration/adjustment methods based off of the work of Kennedy and O’Hagan have

been proposed. See Section 3.2.2 for additional references. A further advancement

that a Bayesian approach could allow is the incorporation of models of differing accu-

racies as done in Qian and Wu [42]. Based off the work of Kennedy and O’Hagan, they

propose combining high-accuracy and low-accuracy by using the following adjustment

model:

yh(xi) = ρ(xi)yl(xi) + δ(xi) + ε(xi),

where yh and yl are the low and high accuracy observations, respectively, ε is the

observation error, and ρ and δ are GP models. A Bayesian hierarchical framework

is used for estimation. Again, the flexibility of the GP models to adapt locally is an

advantage in LOE framework, where follow-up experimentation is only on a subregion

of the complete design space. Lastly, a different approach to the Bayesian modeling

of data from multiple sources is given in Reese et al. [44], who propose setting prior

distributions based on expert opinion and computer models. In particular, posterior

distributions of the parameter values in the expert opinion model are used as the

prior distributions for the parameters in the computer model. Similarly, the posterior

distributions of the computer model parameters are used as the prior distributions

for the physical model parameters. This approach could potentially be modified to

fit nicely into the LOE approach. For example, posterior distributions for model

parameters obtained after the initial experiment could be used as the prior distribu-

tions for the first set of follow-up experimentation and so on. A downfall, however,

is the modeling approach in Reese et al. assumes the same multiple regression model

for all sources of data. If considering the LOE approach as provided in Kim [32],
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an advantage is that the regression models can change over time so that non-linear

response surfaces can be reasonably approximated by linear models on subregions of

the complete design space. Possibly a more flexible modeling procedure than linear

regression could be developed and incorporated into this procedure. As a final note

on modeling, many of the methodologies above and referenced in Section 3.2.2 are

motivated by computer experiments, and as a result, modifications may be needed to

better deal with physical experimentation.

A good review of Bayesian experimental design procedures is provided in Chaloner

and Verdinelli [12]. The general framework is as follows. Let ξ be a design to be chosen

from the design space X , y be the observed sample from Y , d be a decision taken

from a set D, and θ be an unknown parameter in Θ. A utility function U(d, θ, ξ,y) is

defined to incorporate the objective of the design. Then, the optimal design is chosen

to maximize the expected utility; the optimal design is the design ξ∗ that maximizes

U(ξ∗) =

∫
Y

max
d∈D

∫
Θ

U(d, θ, ξ,y)p(θ | y, ξ)p(y | ξ)dθdy.

In the LOE framework in Kim [32], a D-optimal design was combined with the space

filling designs. The Bayesian counterpart to D-optimal designs is related to the

Shannon information. In particular, the design that maximizes the expected gain in

Shannon information is given by the utility function

U(ξ) =

∫
log {p(θ | y, ξ)} p(y, θ | ξ)dθdy.

Using Gaussian linear regression models (as in Kim), the utility reduces to

U(ξ) = −k
2

log(2π)− k

2
+

1

2
log det

{
σ−2(nM(ξ) +R

}
,

where k is the number of unknown parameters (σ2 is considered known), nM(ξ) =

XTX, and R is a known k × k matrix such that the variance-covariance matrix is

σ2R−1. This utility function is known as the Bayesian D-optimality criteria. As in

Kim, a Bayesian D-optimality criteria could be combined with a space-filling design

95



criteria by restricting the distance between any two points. Dealing with non-linear

models, such as some engineering models, can complicate the analysis. See Chaloner

and Verdinelli [12] for more details. Verdinelli and Kadane [47] considered another

utility function to balance the Shannon information gain and the goal of maximizing

the total output, two objectives that are useful for the LOE framework discussed here

and in Kim. Their utility function is defined as

U(ξ) =

∫ [
ρyT1 + β log p(θ | y, ξ)

]
p(y, θ | ξ)dydθ,

where ρ and β are chosen to balance the two objectives. In the LOE framework, ρ and

β can be adaptive parameters. This utility function could serve as a starting point

for proposing new, adaptive experimental designs for the Bayesian LOE framework.

Updating the design region over time can be addressed in a Bayesian approach or

an alternative approach as discussed in this work, in Kim [32], or Mandal, Ranjan,

and Wu [38]. These procedures include setting a threshold based on quantiles, using a

numerical procedure to build a region around the “best” observed point, and finding

level sets, respectively. However, these approaches are more numerical in nature. To

conclude a Bayesian LOE framework, a Bayesian decision theoretic framework could

provide a nice addition. Potentially, a framework for deciding subsequent design

regions could be developed by incorporating a formal treatment of the risk in selecting

among differing follow-up design regions. A comprehensive introduction to Bayesian

decision theory can be found in Berger [7].
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APPENDIX A

SUPPLEMENTAL MATERIAL FOR INITIAL

EXPERIMENTAL DESIGN

A.1 Engineering Model Data

Let f(X; β) be an engineering model describing the system of interest. From a statis-

tical point of view, f only provides part of the information about the system; the mean

of the model is specified with no mention of variability around the mean, rendering

statistical inference, such as creating a prediction interval, impossible. Therefore, con-

jectured data will be provided in the same vector form as the expert opinion data was

provided. For example, based on the work of Reese et al ([44]), an expert will specify

(σ2
ei
, ξi, qξi), or equivalently, (log(σ2

ei
), ξi, log(qξi)),where σ2

ei
is the expected mean of

the variance model at design point xi and ξi and qξi are such that P (σ2
ei
≤ ξi) = qξi .

Then a log-variance model is:

logσ2
e ∼ N(Xσeβσe + δσe , σ

2
σeΣσe)

βσe | σ
2
σe ∼ N(µσe , σ

2
σeCσe)

σ2
σe ∼ IG(ασe , γσe)

δσe ∼ N(θδσe , ξ
2
δσe
I),

where δσe is an unknown bias term that arises do to the lack of knowledge of the

true variance model. The prior distributions for the hyperparameters, as well as the

form of the covariance matrices Σσe and Cσe , can be set in accord with a researchers

beliefs.

After the variance model is specified, an approximate model for the engineering

model can be defined as: Yeng(xi)
ind∼ N(f(xi;β), σ2

e(xi)).
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A.2 Expert Opinion and Details for Modifying an Expert
Opinion Method for Modeling Past Experimental Data
Point by Point.

There are many methods for modeling and eliciting expert opinion data ([22]). A

recent method which interested readers can refer to in order to incorporate expert

opinion models is provided in Reese et al. ([44]). In this section, however, we provide

details on how the method for modeling expert opinion data given in Reese et al. can

be modified to model past experimental data when each data point is conjectured

individually instead of by a complete model shift. When conjecturing data using past

experimental data as a reference point, the true mean response is not conjectured, but

instead, the expected difference between the past and future responses is conjectured.

Thus, we need to take into account that the lack of knowledge is modeled through λ

now instead of Y . Another distinction between modeling expert opinion in the style

of Reese et al. and past experimental data is that the true design point is subject to

bias, adding an additional source of variability which needs to be considered in the

modeling process.

Suppose there are np responses from past experiments. For each response, we

will have a data vector of the form (λi, ξi, qξi ,xi,mλ,i), where λi is the conjectured

difference between the response of the new and past experiments, xi is the conjectured

design point in the new experimental region, mλ,i is a relative worth (see Reese et

al. ([44])), and ξi and qξi are a coverage probability and a quantile associated with

that probability, respectively, such that at the i-th experimental point, it is believed

that P (λi ≤ qξi) = ξi. We use the following hierarchical model:

Y p ∼ N(Xpβ + δp, σ
2Σp)

β | σ2 ∼ N(µp,σ
2Cp)

σ2 ∼ IG(αp, γp)

Xp,i
independent∼ N(µXi

, σ2
XΣXi

),
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where Σp = diag [1/ki]
np
i=1, Cp = diag [1/ci]

dim(β)
i=1 and ΣXi

= [1/χi]. Let ηp be the set

of all hyperparameters that will be included as hyperparameters. By use of conjugate

priors, it follows that

π(β|σ2,ηp,yp,Xp) ∼ N
(
(X ′pΣ

−1
p Xp +C−1

p )−1zp, σ
2(X ′pΣ

−1
p Xp +C−1

p )−1
)
,

and

π(σ2 | ηp,yp,Xp) ∼ IG
(
αp +

np
2
, γp + .5

[
(yp − δp)′Σ−1

p (yp − δp)

+ µ′pC
−1
p µp − z′(X ′pΣ−1

p Xp +C−1
p )−1zp

])
,

where zp = X ′pΣ
−1
p (λ− (δp − ỹ)) +C−1

p µp.

To incorporate the elicited vector of values in the modeling procedure, suppose

we have mλ,i hypothetical repetitions of λi were elicited at each design point with the

mean and variance equal to the elicited values. Then

(
X ′pΣ

−1
p (ỹ − (δp − λ))

)
j

= kp1x1,j

(mλ,i∑
n=1

(λj,n − (δp,1 − ỹ1))
)

+ · · ·+ kpnpxnp,j

(mλ,np∑
n=1

(λj,n − (δp,np − ỹnp))
)

= kp1mλ,1x1,j(λ1 − (δp,1 − ỹ1)) + · · ·+ kpnpmλ,npxnp,j(λnp − (δp,np − ỹnp)).

Let s2
λ,i = (λi− qξλ,i)2/Z2

ξλ,i
be the elicited variance approximation for λi at design

point xi. Then

(yp − δp)′Σ−1
p (yp − δp) = (λ− (δp − ỹ))′Σ−1

p (λ− (δp − ỹ))

= kp1

(mλ,1∑
n=1

(λj,n − (δp,1 − ỹ1))2
)

+ · · ·

+ kpnp

(mλ,np∑
n=1

(λj,n − (δp,np − ỹnp))2
)

=

np∑
i=1

kpimλ,i

(
s2
λi

+ (λi − (δp,i − ỹi))2
)
,

which follows from the identity, V ar(Λ) = E[Λ2]− E[Λ]2.
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Lastly, a similar argument yields

(
X ′pΣ

−1
p Xp

)
ij

=

np∑
n=1

kpnmλ,nxn,ixn,j.

With these equivalences, the conditional distributions can now be expressed in terms

of the elicited values of the mean difference in the past and future data. If desired,

more prior distributions can be placed on the hyperparameters as done in Reese et

al. ([44]). Parameter estimation and prediction can be done by Gibbs sampling.

A.2.1 Proof of Proposition 2.1.

(P1) If p̃(xi) = m, then sgn (m− p̃(xi)) = 0, implying f(p(xi),u(xi)) = p̃(xi). Since

p̃(xi) is a rescaled probability, still between 0 and 1, 0 ≤ f ≤ 1.

If p̃(xi) > m, then sgn (m− p̃(xi)) = −1 and
∣∣∣ p̃(xi)
m
− 1
∣∣∣ =

(
p̃(xi)
m
− 1
)
.

Therefore,

sgn (m− p̃(xi)) (m−mũ(xi))

∣∣∣∣ p̃(xi)

m
− 1

∣∣∣∣ = − (m−mũ(xi))

(
p̃(xi)

m
− 1

)
= − (p̃(xi)−m) (1− ũ(xi))

≥ − (p̃(xi)−m)

= (m− p̃(xi)) .

Therefore, f(p(xi),u(xi)) = p̃(xi) + sgn (m− p̃(xi)) (m−mũ(xi))
∣∣∣ p̃(xi)
m
− 1
∣∣∣ ≥

m ≥ 0. Lastly, since (m−mũ(xi))
∣∣∣ p̃(xi)
m
− 1
∣∣∣ ≥ 0, f(p(xi),u(xi)) ≤ p̃(xi) ≤ 1.

Thus, 0 ≤ f ≤ 1. By an analogous argument, if p̃(xi) < m, then 0 ≤ f ≤ 1.

(P2) Suppose p̃(xi) > m. Then sgn (m− p̃(xi)) = −1. Moreover,
∣∣∣ p̃(xi)
m
− 1
∣∣∣ = p̃(xi)

m
−

1. In this case, we assume we have sufficient trust in the model, i.e., ũ(xi) >
1
2
,
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implying − (m−mũ(xi)) > −
(
m
2

)
. Therefore,

f(p(xi),u(xi)) = p̃(xi)− (m−mũ(xi))

∣∣∣∣ p̃(xi)

m
− 1

∣∣∣∣
> p̃(xi)−

m

2

(
p̃(xi)

m
− 1

)
=

p̃(xi)

2
+
m

2

> m.

If p̃(xi) < m and in the cases with insufficient trust, the proofs follow in a

similar manner.

(P3) If p̃(xi) > m. Then, f(p(xi),u(xi)) is a increasing function of ũ(xi) with a

minimum value of m and a maximum value of p̃(xi) occurring when ũ(xi) = 0

and ũ(xi) = 1, respectively. If p̃(xi) < m, then f(p(xi),u(xi)) is a decreasing

function of ũ(xi) with a maximum value of m and a minimum value of p̃(xi)

occurring when ũ(xi) = 0 and ũ(xi) = 1, respectively. Lastly, if p̃(xi) = m,

then f(p(xi),u(xi)) = m whenever ũ(xi) = 0. Thus, as ũ(xi) increases to

1, f(p(xi),u(xi)) reflects the information of the prior model, and when ũ(xi)

decreases to 0, f(p(xi),u(xi)) is normalized to m. �
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APPENDIX B

SUPPLEMENTAL MATERIAL FOR MODEL ROBUST

PROCESS OPTIMIZATION

B.1 Proof of Proposition 3.1.

For a fixed design point, x̃, consider the mixture model

f(y | Θ) =
m∑
j=1

wjfj(y | θj),

where the weight vectorw = {wj}mj=1 implicitly depends on x̃. Let k = {ki}ni=1 denote

the vector of kernel weights at design point x̃. The local log-likelihood can be written

as

logL(Θ | y) = C +
n∑
i=1

ki log f(yi | Θ)

= C +
n∑
i=1

ki log
m∑
j=1

wjfj(yi | θj),

where C is the log of the normalizing constant for the local log-likelihood. Let zi be a

latent (unobserved) variable which denotes the model which generated observation i.

For example, if observation i resulted from the k-th model, k = 1, . . . ,m, then zi = k.

Let z = {zj}mj=1 . Conditional on z, the local log-likelihood becomes

logL(Θ | y, z) = C +
n∑
i=1

ki log f(yi | Θ, zi)f(zi | Θ)

= C +
n∑
i=1

ki logwzifzi(yi | Θ).
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Moreover, by Bayes’s rule, the distribution of z conditional on the responses, y, and

the vector of parameters, Θ, can be expressed as

f(z | y,Θ) =
n∏
i=1

f(zi | yi, θzi)

=
n∏
i=1

f(zi|θzi)f(yi | zi, θzi)
f(yi | θzi)

=
n∏
i=1

wzifzi(yi | θzi)∑M
j=1wjfj(yi | θj)

Let Θ(t) be the estimates of the parameter Θ after the t-th iteration of the algorithm

and Z be the sample space of z. We then have

Q(Θ,Θ(t−1)) ≡ Ez
[
log f(y, z | Θ) | y,Θ(t−1)

]
=

∑
z∈Z

log(L(Θ | y, z))f(z | y,Θ(t−1))

= C +
∑
z∈Z

n∑
i=1

ki log(wzifzi(yi | Θ))
n∏
j=1

f(zj | yj,Θ(t−1))

= C +
m∑

z1=1

· · ·
m∑

zn=1

n∑
i=1

ki log(wzifzi(yi | Θ))
n∏
j=1

f(zj | yj,Θ(t−1)).

Let δl,zi = 1 if zi = l and 0 otherwise, where l = 1, . . . ,m, and let f(l | yj,Θ(t−1)) =

P (zi = l | yi,Θ(t−1)) . Then

Q(Θ,Θ(t−1)) = C +
m∑

z1=1

· · ·
m∑

zn=1

n∑
i=1

m∑
l=1

δl,ziki log(wlfl(yi | Θ))
n∏
j=1

f(zj | yj,Θ(t−1))

= C +
m∑
l=1

n∑
i=1

ki log(wlfl(yi | Θ))
m∑

z1=1

· · ·
m∑

zn=1

δl,zi

n∏
j=1

f(zj | yj,Θ(t−1))
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Notice that

m∑
z1=1

· · ·
m∑

zn=1

δl,zi

n∏
i=1

f(zi | yi,Θ(t−1)) =

=

 m∑
z1=1

· · ·
m∑

zi−1=1

m∑
zi+1=1

· · ·
m∑

zn=1

n∏
j=1,j 6=i

f(zj | yj,Θ(t−1))


× f(l | yi,Θ(t−1))

=
n∏

j=1,j 6=i

 m∑
zj=1

f(zj | yj,Θ(t−1))

 f(l | yi,Θ(t−1))

= f(l | yi,Θ(t−1)),

where we use the fact that
∑m

zj=1 f(zj | yj,Θ(t−1)). Then, Q(Θ,Θ(t−1)) can then be

expressed as

Q(Θ,Θ(t−1)) = C +
m∑
l=1

n∑
i=1

ki log(wlfl(yi | Θ))f(l | yi,Θ(t−1))

= C +
m∑
l=1

n∑
i=1

ki log(wl)f(l | yi,Θ(t−1))

+
m∑
l=1

n∑
i=1

ki log(fl(yi | Θ))f(l | yi,Θ(t−1)).

At time t, the weights, wl, l = 1, . . . ,M , are found as the arguments maximizing

Q(Θ,Θ(t−1)) subject to
∑m

l=1wl = 1. Employing Lagrange multipliers, this results in

solving

d

dwl

[
m∑
l=1

n∑
i=1

ki log(wl)f(l | yi,Θ(t−1)) + λ

(
m∑
l=1

wl − 1

)]
= 0.

Taking the partial derivative results in the finding

n∑
i=1

ki
wl
f(l | yi,Θ(t−1)) = −λ,

implying thats

wl = −1

λ

n∑
i=1

kif(l | yi,Θ(t−1))
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Summing up both sides over l = 1, . . . ,m, we get

1 = −1

λ

n∑
i=1

ki

m∑
l=1

f(l | yi,Θ(t−1)) = −1

λ

n∑
i=1

ki,

giving

λ = −
n∑
i=1

ki.

The estimated weights are therefore given by

ŵl =

∑n
i=1 kif(l | yi,Θ(t−1))∑n

i=1 ki
,

where

f(l | yi,Θ(t−1)) =
wlfl(yi | θl)∑m
j=1wjfj(yi | θj)

.

Lastly, since Q(Θ,Θ(t−1)) is decomposed into two sums, the first of which is inde-

pendent of Θ, the model parameters are estimated as

θ̂ = arg max
θ∈Θ\w

m∑
l=1

n∑
i=1

ki log(fl(yi | Θ))f(l | yi,Θ(t−1)).

�
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